Abstract:
An image sensor includes a first photodiode with associated first sense node and a second photodiode with associated second sense node. A first transistor has its control node coupled to the first sense node and a second transistor has its control node coupled to the second sense node. The conduction paths (for example, source-drain paths) of the first and second transistors are coupled in series between first and second column lines associated with a column of the image sensor array. Switches control connection of the first and second column lines in two modes: one mode where a voltage is applied to the first column line and data from one of the photodiodes is read out by the second column line; and another mode where a voltage is applied to the second column line and data from the other of the photodiodes is read out by the first column line.
Abstract:
A ranging apparatus includes an array of light sensitive detectors configured to receive light from a light source which has been reflected by an object. The array includes a number of different zones. Readout circuitry including at least one read out channel is configured to read data output from each of the zones. A processor operates to process the data output to determine position information associated with the object.
Abstract:
A method for fabricating an electronic device includes fixing a rear face of an integrated-circuit chip to a front face of a support wafer. An infused adhesive is applied in the form of drops or segments that are separated from each other. A protective wafer is applied to the infused adhesive, and the infused adhesive is cured. The infused adhesive includes a curable adhesive and solid spacer elements infused in the curable adhesive. A closed intermediate peripheral ring is deposited on the integrated-circuit chip outside the cured infused adhesive, and an encapsulation block is formed such that it surrounds the chip, the protective wafer and the closed intermediate peripheral ring.
Abstract:
A system may include a first device, a second device, a third device, and a serial link between the second device and the third device. The first device may be configured to deliver to the second device an information stream having a transmission fault tolerance associated with a transmission by the second device to the third device over the serial link. A related method may include, during the transmission over the serial link, phases for synchronization between the second and third devices, and during each synchronization phase, the first device may continue to deliver the information stream to the second device.
Abstract:
When a module is loaded by the operating system kernel, dynamic information of the module, such as the memory addresses of the different sections of the module allocated by the operating system, is stored in a known variable, which is subsequently accessible by the debugging tool. Furthermore, an interrupt instruction that will allow the debugger to interrupt the running of the operating system following the complete loading of the module is inserted into the debugging tool in such a way as to retrieve the dynamic information necessary for the debugging of the module.
Abstract:
A method of simultaneously manufacturing First and second pixels respectively shielded on a first and on a second side are simultaneously manufactured using a process wherein a first insulator is deposited on an active area. A first metal level is deposited and defined, with a first mask, to form a shield on the first side of the first pixel and on the second side of the second pixel, and a line opposite to the shield. A second insulator is deposited, and via openings therein are defined, with a second mask. An overlying second metal level is deposited and defined, with a third mask, to form two connection areas covering the via openings on each side of the first and second pixels. The second and third masks are identical for the first and second pixels.
Abstract:
An optical pulse emitter includes a light emitting device having a first node coupled to an intermediate node via a first switch. The intermediate node is coupled to a supply voltage node via a second switch. A capacitor is coupled to the intermediate node. The first, second and third switches are controlled by a control circuit. During a first phase, the second switch is actuated to couple the capacitor to the supply voltage node. During a second phase, the second switch is deactuated and the first switch is actuated to at least partially discharge the capacitor through the light emitting device. During a third phase, discharge current from the capacitor bypasses around the light emitting device.
Abstract:
An electronic device includes a support board having a mounting face and an integrated circuit chip mounted on the mounting face. An encapsulation block embeds the integrated circuit chip, the encapsulation block extending above the integrated circuit chip and around the integrated circuit chip on the mounting face of the support board. The encapsulation block includes a front face with a hole passing through the encapsulation block to uncovering at least part of an electrical contact. A layer made of an electrically conducting material fills the hole to make electrical connection to the electrical contact and further extends over the front face of the encapsulation block.
Abstract:
A pixel has a photodiode configured to be sensitive to light. The pixel is arranged to use back side illumination. The pixel has at least one sample and hold capacitor which is arranged on the side of the photodiode remote from a side on which light impinges. The capacitor overlies at least part of the photodiode.
Abstract:
A method of simultaneously manufacturing First and second pixels respectively shielded on a first and on a second side are simultaneously manufactured using a process wherein a first insulator is deposited on an active area. A first metal level is deposited and defined, with a first mask, to form a shield on the first side of the first pixel and on the second side of the second pixel, and a line opposite to the shield. A second insulator is deposited, and via openings therein are defined, with a second mask. An overlying second metal level is deposited and defined, with a third mask, to form two connection areas covering the via openings on each side of the first and second pixels. The second and third masks are identical for the first and second pixels.