摘要:
Rapidly heat powdered aluminum, an admixture of powdered aluminum and a compatible solid material, a powdered admixture of alumina and carbon, or aluminum nitride powder having a surface area lower than desired in the presence of a source of nitrogen at a temperature of 2473 to 3073K to produce aluminum nitride, then promptly quench the aluminum nitride product. The product has a surface area of greater than 10 m.sup.2 /g, preferably greater than 15 m.sup.2 /g.
摘要:
Rapidly heat powdered aluminum in the presence of a source of nitrogen at a temperature of 1873 to 2373 K. to produce aluminum nitride, then promptly quench the aluminum nitride product. The product has a surface area between 2 and 8 square meters per gram and an oxygen content of less than 1.2 weight percent.
摘要:
Ultra-thin porous films are deposited on a substrate in a process that includes laying down an organic polymer, inorganic material or inorganic-organic material via an atomic layer deposition or molecular layer deposition technique, and then treating the resulting film to introduce pores. The films are characterized in having extremely small thicknesses of pores that are typically well less than 50 nm in size.
摘要:
The invention includes a nanoporous LLC polymer membrane wherein ultra-thin films or clusters of inorganic material are deposited inside the porous structure of the LLC polymer membrane. The membranes of the invention have high levels of pore size uniformity, allowing for size discrimination separation, and may be used for separation processes such as gas-phase and liquid-phase separations.
摘要:
Layers of a passivating material and/or containing luminescent centers are deposited on phosphor particles or particles that contain a host material that is capable of capturing an excitation energy and transferring it to a luminescent center or layer. The layers are formed in an ALD process. The ALD process permits the formation of very thin layers. Coated phosphors have good resistance to ambient moisture and oxygen, and/or can be designed to emit a distribution of desired light wavelengths.
摘要:
Titanium dioxide particles are coated first with an interstitial coating and then with silicon dioxide or alumina. The coatings are suitably applied via an atomic layer deposition process. The interstitial coating preserves the bright white coloration of the particles after they are coated. The particles therefore can be used as pigments and white fillers in polymers, paints, paper and other applications.
摘要:
1-100 nm metal ferrite spinel coatings are provided on substrates, preferably by using an atomic layer deposition process. The coatings are able to store energy such as solar energy, and to release that stored energy, via a redox reaction. The coating is first thermally or chemically reduced. The reduced coating is then oxidized in a second step to release energy and/or hydrogen, carbon monoxide or other reduced species.
摘要:
1-100 nm metal ferrite spinel coatings are provided on substrates, preferably by using an atomic layer deposition process. The coatings are able to store energy such as solar energy, and to release that stored energy, via a redox reaction. The coating is first thermally or chemically reduced. The reduced coating is then oxidized in a second step to release energy and/or hydrogen, carbon monoxide or other reduced species.
摘要:
The present invention provides a method for carrying out high temperature thermal dissociation reactions requiring rapid-heating and short residence times using solar energy. In particular, the present invention provides a method for carrying out high temperature thermal reactions such as dissociation of hydrocarbon containing gases and hydrogen sulfide to produce hydrogen and dry reforming of hydrocarbon containing gases with carbon dioxide. In the methods of the invention where hydrocarbon containing gases are dissociated, fine carbon black particles are also produced. The present invention also provides solar-thermal reactors and solar-thermal reactor systems.
摘要:
Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.