Abstract:
The present invention relates to a method for producing a supported catalyst, a catalyst which is obtainable using the method, and use thereof for the partial oxidation or ammoxidation of olefins, in particular for the oxidation of propene to acrolein, of isobutene to methacrolein, and/or the ammoxidation of propene to acrylonitrile. The method according to the invention includes the following steps: a) providing a solution in which precursor compounds of the catalytically active component are essentially completely dissolved in a suitable solvent; b) bringing the solution obtained in step a) into contact with a (chemically) inert, porous support having a specific surface of 1 to 500 m2/g; c) heat treatment of the material obtained in step b), in which the precursor compounds of the catalytically active component are converted to their oxides.
Abstract:
This disclosure relates to catalyst compositions including gallium and a zirconium-based mixed oxide support, to methods for making such catalysts, and to methods for dehydrogenating hydrocarbons with such catalysts. For example, in one embodiment, a catalyst composition includes a mixed oxide support comprising at least about 50 wt. % of zirconium oxide, the mixed oxide support being present in the composition in an amount within the range of about 40 wt. % to about 99.9 wt. %; and disposed on the support, gallium, present in the composition in an amount within the range of about 0.1 wt. % to about 30 wt. %, calculated as Ga2O3 on a calcined basis.
Abstract:
This disclosure relates to catalysts comprising gallium, cerium, and a mixed oxide support useful in the dehydrogenation of hydrocarbons, to methods for making such catalysts, and to methods for dehydrogenating hydrocarbons with such catalysts. For example, in one embodiment, a catalyst composition includes gallium oxide, present in the composition in an amount within the range of about 0.1 wt. % to about 30 wt. %, cerium oxide, present in the composition in an amount within the range of about 0.1 wt. % to about 15 wt. %, a promoter, M1, selected from Pt, Ir, La, or a mixture thereof, present in the composition in an amount within the range of about 0.005 wt. % to about 4 wt. %, a promoter, M2, selected from the group 1 elements (e.g., Li, Na, K, Cs), present in the composition in an amount within the range of about 0.05 wt. % to about 3 wt. %, and a support, S1, selected from alumina, silica, zirconia, titania, or a mixture thereof, present in the composition in an amount within the range of about 60 wt. % to about 99 wt. %.
Abstract:
Disclosed is a process for the manufacture of a chromium-containing catalyst with a reduced amount of chromium-(VI)-oxide which process comprises the steps: a) preparing a solid particulate chromium-containing oxidic catalyst comprising Cr-(VI)-oxide, b) introducing the solid particulate catalyst into a reactor in which the catalyst particles are mixed using process gas and/or mechanical means, c) introducing a reducing agent for chromium-(VI) into the reactor, d) treating the solid particulate catalyst with the reducing agent in the reactor for a time, at a temperature and at a pressure, so that the chromium-(VI) content in the particulate catalyst is considerably reduced by the reducing agent, and e) discharging the solid particulate catalyst comprising a reduced chromium-(VI) content from the reactor. The disclosed process is simple and efficient and allows manufacture of chromium-containing oxidic catalysts with low content of Cr-(VI)-oxide on an industrial scale.
Abstract:
The present disclosure relates to solid phosphoric acid (SPA) catalysts useful in the conversion of hydrocarbons, such as the oligomerization of olefins, to methods for making such SPA catalysts, and to methods for converting hydrocarbons by contacting hydrocarbons with such catalyst. For example, in certain embodiments, the disclosure provides a calcined solid phosphoric acid catalyst composition that includes phosphoric acid and silicon phosphates, and in which (i) one or more promoters each selected from the group consisting of boron, bismuth, tungsten, silver and lanthanum is present; (ii) the composition is a calcined product of a formable mixture including silica-alumina clay, silica fiber and/or silica alumina fiber; or (iii) the composition is a calcined product of a formable mixture including fumed silica.
Abstract:
The present disclosure relates generally to ceramic materials suitable for use as catalyst support materials, catalysts using such materials and methods for using them, such as methods for converting sugars, sugar alcohols, glycerol, and bio-renewable organic acids to commercially-valuable chemicals and intermediates. One aspect of the invention is a ceramic material including zirconium oxide and one or more metal oxides selected from nickel oxide, copper oxide, cobalt oxide, iron oxide and zinc oxide, the ceramic material being at least about 50 wt. % zirconium oxide. In certain embodiments, the ceramic material is substantially free of any binder, extrusion aid or additional stabilizing agent.
Abstract:
The present disclosure relates generally to catalyst support materials, catalysts and methods for using them, such as methods for converting sugars, sugar alcohols, glycerol, and bio-renewable organic acids to commercially-valuable chemicals and intermediates. One aspect of the invention is catalyst support material including ZrO2 and one or more oxides of manganese (MnOx), the catalyst support material being at least about 50 wt % ZrO2 and MnOx. In certain embodiments, the weight ratio of ZrO2 to MnOx is within the range of about 1:1 to about 30:1; and/or the catalyst support material is substantially free of any binder, extrusion aid or additional stabilizing agent.
Abstract:
A catalytic water gas shift process at temperatures above about 450° C. up to about 900° C. or so wherein the catalyst includes rhenium deposited on a support, preferably without a precious metal, wherein the support is prepared from a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and/or an additional dopant selected from Ga, Nd, Pr, W, Ge, Fe, oxides thereof and mixtures thereof.
Abstract:
Ethylene glycol and propylene glycol may be made by hydrogenolysis of a polyol comprising the steps of reacting a polyol with hydrogen in the presence of a hydrogenolysis catalyst. The hydrogenolysis comprises nickel, one or more promoter, and one or more support. The promoter is selected from bismuth, silver, tin, antimony, gold, lead, thallium, cerium, lanthanum, and manganese. The support is selected from zirconia and carbon. A zirconia support comprises a zirconia textual promoter, which is selected from Cr, Mo, W, Nb, Ce, Ca, Mg, La, Pr, Nd, Al, and P. If the support comprises carbon, then the promoter is selected from bismuth and antimony. In another embodiment, if the support comprises carbon, then both the promoter is selected from bismuth and antimony, and the catalyst comprises copper. In another embodiment, the catalyst additionally comprises copper.
Abstract:
Disclosed is a process for the manufacture of a chromium-containing catalyst with a reduced amount of chromium-(VI)-oxide which process comprises the steps: a) preparing a solid particulate chromium-containing oxidic catalyst comprising Cr-(VD-oxide, b) introducing the solid particulate catalyst into a reactor in which the catalyst particles are mixed using process gas and/or mechanical means, c) introducing a reducing agent for chromium-(VI) into the reactor, d) treating the solid particulate catalyst with the reducing agent in the reactor for a time, at a temperature and at a pressure, so that the chromium-(VI) content in the particulate catalyst is considerably reduced by the reducing agent, and e) discharging the solid particulate catalyst comprising a reduced chromium-(VI) content from the reactor. The disclosed process is simple and efficient and allows manufacture of chromium-containing oxidic catalysts with low content of Cr-(VI)-oxide on an industrial scale.