Abstract:
A circuit includes a capacitive-load voltage controlled oscillator having an input configured to receive a first input signal and an output configured to output an oscillating output signal. A calibration circuit is coupled to the voltage controlled oscillator and is configured to output one or more control signals to the capacitive-load voltage controlled oscillator for adjusting a frequency of the oscillating output signal. The calibration circuit is configured to output the one or more control signals in response to a comparison of an input voltage to at least one reference voltage.
Abstract:
A transimpedance amplifier includes a first inverter having a first input node and a first output node. The first input node is configured to be coupled to an input signal. A second inverter has a second input node and a second output node. The second input node is configured to receive a reference voltage terminal. The first inverter and the second inverter are configured to provide a differential output voltage signal between the first output node and the second output node.
Abstract:
A method of operating a charge pump of a phase-lock assistant circuit includes determining a first relative timing relationship of a phase of a data signal to a phase of a first phase clock. A second relative timing relationship of the phase of the data signal to a phase of a second phase clock is determined, and the first and second phase clocks have a 45° phase difference. An up signal and a down signal are generated in response to the first relative timing relationship and the second relative timing relationship. The charge pump circuit is driven according to the up signal and the down signal.
Abstract:
An input/output (I/O) circuit includes an electrostatic discharge (ESD) protection circuit electrically coupled with an output node of the I/O circuit. At least one inductor and at least one loading are electrically coupled in a series fashion and between the output node of the I/O circuit and a power line. A circuitry is electrically coupled with a node between the at least one inductor and the at least one loading. The circuitry is operable to increase a current flowing through the at least one inductor during a signal transition.
Abstract:
A PLL circuit includes a phase frequency detector; a programmable charge pump coupled to an output of the phase frequency detector; a loop filter coupled to an output of the charge pump, the loop filter providing a fine tuning voltage; a first voltage-to-current converter, the first voltage-to-current converter providing a fine tuning current corresponding to the fine tuning voltage; a current-controlled oscillator (CCO); a feedback divider coupled to an output of the CCO and an input of the phase frequency detector; and an analog calibration circuit. The analog calibration circuit provides a coarse adjustment current for coarse adjustments to a frequency pivot point for an oscillator frequency of the CCO, wherein the CCO generates a frequency signal at an output responsive to a summed coarse adjustment and fine tuning current, wherein the frequency pivot point is continuously adjustable.
Abstract:
An energy harvesting system includes a plurality of transducers. The transducers are configured to generate direct current (DC) voltages from a plurality of ambient energy sources. A sensor control circuit has a plurality of sensors configured to detect the DC signals from the plurality of transducers. A DC-to-DC converter is configured to supply an output voltage. A plurality of switches, each switch coupled between the DC-to-DC converter and a corresponding transducer of the plurality of transducers. The sensor control circuit enables one switch of the plurality of switches and disables the other switches of the plurality of switches based on a priority criterion.
Abstract:
A voltage regulator circuit with high accuracy and Power Supply Rejection Ratio (PSRR) is provided. In one embodiment, an op-amp with a voltage reference input to an inverting input has the first output connected to a PMOS transistor's gate. The PMOS transistor's source and drain are each connected to the power supply and the voltage regulator output. The voltage regulator output is connected to an NMOS transistor biased in saturation mode and a series of two resistors. The non-inverting input of the op-amp is connected in between the two resistors for the first feedback loop. The op-amp's second output is connected to the gate of the NMOS transistor through an AC-coupling capacitor for the second feedback loop. The op-amp's first output can be connected to the power supply voltage through a capacitor to further improve high frequency PSRR. In another embodiment, the role of PMOS and NMOS transistors is reversed.
Abstract:
A multiple-phase clock generator includes at least one stage of dividers. A clock signal is supplied as a first stage clock input to dividers in a first stage of dividers. An N-th stage includes 2N dividers, where N is a positive integer number. Each divider in the first stage is configured to divide a first clock frequency of the first stage clock input by 2 to provide a first stage output. Each divider in the N-th stage is configured to divide an N-th clock frequency of an N-th stage clock input by 2 to provide an N-th stage output. The N-th stage outputs from the dividers in the N-th stage provide 2N-phase clock signals that are equally distributed with a same phase difference between adjacent phase clock signals.
Abstract:
A clock and data recovery (CDR) circuit includes an inductor-capacitor voltage controlled oscillator (LCVCO) configured to generate a clock signal with a clock frequency. A delay locked loop (DLL) is configured to receive the clock signal from the LCVCO and generate multiple clock phases. A charge pump is configured to control the LCVCO. A phase detector is configured to receive a data input and the multiple clock phases from the DLL, and to control the first charge pump in order to align a data edge of the data input and the multiple clock phases.
Abstract:
A level shifter includes an input node, an output node, a pull-up transistor, a pull-down transistor, and at least one diode-connected device coupled between the pull-up transistor and the pull-down transistor. The level shifter is arranged to be coupled to a high power supply voltage, to receive an input signal having a first voltage level at the input node, and to supply an output signal having a second voltage level at the output node. The high power supply voltage is higher than the first voltage level. The at least one diode-connected device allows the output signal to be pulled up to about a first diode voltage drop below the high power supply voltage and/or to be pulled down to about a second diode voltage drop above ground. The first diode voltage drop and the second diode voltage drop are from the at least one diode-connected device.