Abstract:
A liquid crystal display (LCD) panel is provided. A pixel structure of the LCD panel has an asymmetrical liquid crystal alignment. The LCD panel is divided into an array of display blocks. When the LCD panel is in a narrow viewing angle display mode, some of the display blocks are disabled or darkened so that a displayed image is interfered by the disabled or darkened display blocks when it is viewed from the side. Thereby, an anti-peep effect is achieved.
Abstract:
A liquid crystal display panel divided into a first and a second regions respectively having a plurality of sub-pixels arranged in array is provided. Each sub-pixel has a first display area providing a first main alignment vector, a second display area providing a second main alignment vector, and a compensation display area. A direction of the first main alignment vector is opposite to that of the second main alignment vector. When the liquid crystal display panel states in the narrow viewing angle display mode, driving voltages of the first display areas in the first region are substantially greater than driving voltages of the second display areas in the first region, driving voltages of the first display areas in the second region are smaller than driving voltages of the second display areas in the second region, and all the compensation display areas in the first and the second regions are enabled.
Abstract:
A processing circuit includes a processing unit and a data buffer. When the processing unit receives a load instruction and determines that the load instruction has a load-use condition, the processing unit stores specific data into the data buffer, where the specific data is loaded by executing the load instruction.
Abstract:
A video standard detector and operation method thereof are provided. The video standard detector includes a low pass filter (LPF) unit and a standard detector unit. The LPF filters a baseband signal. The feature detector detects vertical synchronization information of the baseband signal and horizontal synchronization information of the baseband signal using the output of the LPF, and determines the video standard corresponding to the baseband signal according to the vertical synchronization information and the horizontal synchronization information.
Abstract:
A light-emitting device package structure includes a carrier, at least one light-emitting device and a magnetic element. The magnetic element aids in enhancing overall luminous output efficiency.
Abstract:
An LDMOS transistor structure and methods of making the same are provided. The structure includes a gate electrode extended on an upper boundary of an extension dielectric region that separates the gate electrode from the drain region of the LDMOS transistor. Moreover, at an area close to an edge of the extended gate electrode portion, the gate electrode further projects downwards into a convex-shaped recess or groove in the upper boundary of the extension dielectric region, forming a tongue. LDMOS transistors with this structure may provide improved suppression of hot carrier effects.
Abstract:
A correlated color temperature (CCT) modulating method including following steps is provided. A white LED light source is modulated to emit a first white light. At least one LED light source is modulated to emit a second white light, wherein the second white light includes at least one broad-spectrum monochromatic light. The first white light and the second white light are mixed to produce a third white light. The color rendering index (CRI) of the third white light is greater than those of the first white light and the second white light, and the color coordinates of the first white light, the second white light, and the third white light are different from each other. Furthermore, an LED light source module and a package structure thereof are also provided.
Abstract:
A method for adjusting the volume of a digital audio signal includes detecting a level in accordance with an audio input signal, determining a gain value in accordance with the detected level, and outputting an audio output signal in accordance with the gain value and the audio input signal. Accordingly, weak audio signals such as background noise in silent periods may be compressed to reduce interference to the human listening experience during such silent periods.
Abstract:
Various example embodiments are disclosed. According to an example embodiment, a method may comprise sending, by a sending wireless station in a wireless network, data to a receiving wireless station, the data being sent via at least one logical distributed resource unit (LDRU), the LDRU including slots included in at least one physical resource unit (PRU), each of the slots included in the at least one PRU being associated with a different orthogonal frequency division multiple access (OFDMA) symbol and a different OFDMA subcarrier.
Abstract:
A bi-power motor controlling system includes a motor, a system apparatus and a motor controlling apparatus, which is electrically connected with the motor and system apparatus respectively. The system apparatus has a rotational-speed target value for determining the targeted rotational speed of the motor. In addition, the system apparatus outputs a first power and a second power to the motor and the motor controlling apparatus, respectively. The motor controlling apparatus detects the motor to obtain a first rotational-speed value of the motor, and then adjusts the rotational speed of the motor to a second rotational-speed value according to the first rotational-speed value. Then, the motor controlling apparatus further generates a rotational-speed feedback signal to the system apparatus. The system apparatus adjusts the outputted first power in accordance with the rotational-speed feedback signal to make the rotational speed of the motor reach the rotational-speed target value.