Abstract:
An ion generator of an ion implanter, the ion generator includes: an arc chamber provided with a slit for ion extraction and forming an equipotential surface with a first voltage; a filament installed inside of the arc chamber, heated to a predetermined temperature and generating electrons; magnetic field devices provided outside of the arc chamber and supplied with a current from a current source and generating a magnetic field in the arc chamber; a gas discharge device injecting a predetermined gas into the arc chamber; and an electrode positioned opposite to the slit and supplied with a second voltage having a high voltage than the first voltage from a voltage source and generating a magnetic field in the arc chamber.
Abstract:
In a method of doping ions into an object, such as a substrate, using plasma, a doping gas may be provided between first and second electrodes in a chamber. An electric field may be formed between the first and the second electrodes to excite the doping gas to a plasma state. The electric field may be formed by applying a first power having a first positive electric potential and a second power having a second positive electric potential, the second positive electric potential being higher than the first positive electric potential. The electric field may be reversed in direction by blocking the second power from being applied to the second electrode. Accumulated ions on the substrate may be effectively neutralized by introducing electrons toward the substrate so that arcing generation may be prevented.
Abstract:
An elementary plasma source for generating plasma is provided. In the elementary plasma source, first and second magnets are shaped like a hollow cylinder, and the second magnet surrounds the first magnet, for forming a magnetic trap between the first and second magnets. A guide provides microwaves to a space between the first and second magnets.
Abstract:
An elementary plasma source for generating plasma is provided. In the elementary plasma source, first and second magnets are shaped like a hollow cylinder, and the second magnet surrounds the first magnet, for forming a magnetic trap between the first and second magnets. A guide provides microwaves to a space between the first and second magnets.
Abstract:
Power electronic devices including 2-dimensional electron gas (2DEG) channels and methods of manufacturing the same. A power electronic device includes lower and upper material layers for forming a 2DEG channel, and a gate contacting an upper surface of the upper material layer. A region below the gate of the 2DEG channel is an off region where the density of a 2DEG is reduced or zero. The entire upper material layer may be continuous and may have a uniform thickness. A region of the upper material layer under the gate contains an impurity for reducing or eliminating a lattice constant difference between the lower and upper material layers.
Abstract:
According to example embodiments a transistor includes a channel layer on a substrate, a first channel supply layer on the channel, a depletion layer, a second channel supply layer, source and drain electrodes on the first channel supply layer, and a gate electrode on the depletion layer. The channel includes a 2DEG channel configured to generate a two-dimensional electron gas and a depletion area. The first channel supply layer corresponds to the 2DEG channel and defines an opening that exposes the depletion area. The depletion layer is on the depletion area of the channel layer. The second channel supply layer is between the depletion layer and the depletion area.
Abstract:
According to an example embodiment, a high electron mobility transistor (HEMT) includes a substrate, a buffer layer on the substrate, a channel layer on the buffer layer, and a barrier structure on the channel layer. The buffer layer includes a 2-dimensional electron gas (2DEG). A polarization of the barrier structure varies in a region corresponding to a gate electrode. The HEMT further includes and the gate electrode, a source electrode, and a drain electrode on the barrier structure.
Abstract:
According to an example embodiment, a power electronic device includes a first semiconductor layer, a second semiconductor layer on a first surface of the first semiconductor layer, and a source, a drain, and a gate on the second semiconductor layer. The source, drain and gate are separate from one another. The power electronic device further includes a 2-dimensional electron gas (2DEG) region at an interface between the first semiconductor layer and the second semiconductor layer, a first insulating layer on the gate and a second insulating layer adjacent to the first insulating layer. The first insulating layer has a first dielectric constant and the second insulating layer has a second dielectric constant less than the first dielectric constant.
Abstract:
A phase change memory device includes a switching device and a storage node connected to the switching device. The storage node includes a bottom stack, a phase change layer disposed on the bottom stack and a top stack disposed on the phase change layer. The phase change layer includes a unit for increasing a path of current flowing through the phase change layer and reducing a volume of a phase change memory region. The area of a surface of the unit disposed opposite to the bottom stack is greater than or equal to the area of a surface of the bottom stack in contact with the phase change layer.
Abstract:
Field effect semiconductor devices and methods of manufacturing the same are provided, the field effect semiconductor devices include a second semiconductor layer on a first surface of a first semiconductor layer, a first and a second third semiconductor layer respectively on two sides of the second semiconductor layer, a source and a drain respectively on the first and second third semiconductor layer, and a gate electrode on a second surface of the first semiconductor layer.