Abstract:
A tool includes two grips and at least one tool head. The grips can be opened to different extents so as to rotate the fixing pins of the grips relative to the openings of the tool head. Accordingly, the short sides of the fixing pins can be respectively aligned with the openings to permit the detachment of the grips from the tool head. Otherwise, the grips are stopped by the long sides of the fixing, pins from detaching from the tool head. The grips can be easily and quickly assembled with or disassembled from the tool head. In addition, the replacement of the tool head can be performed by hand without using any tool or switch. Also, the tool has fewer components which are not easy to miss.
Abstract:
An output buffer device utilizes a PMOS transistor as a first pull-up element and an NMOS transistor as a second pull-up element. An output signal is used to control a feedback circuit. An output signal is switched from a low to high voltage by a trigger voltage. The first pull-up element switches to the second pull-up element to complete the voltage switching from low to high. The device combines the high speed of the first pull-up element and the low noise of the second pull-up element.
Abstract:
A pliers has guiding surfaces at tooth portions of the first pliers body and tooth portions of the engaging unit of the control member. Therefore, when the pressing block of the control member is not pressed, even if the first pliers body is engaged with the tooth portions of the engaging unit, the second pliers body can still be pushed forward relative to the first pliers body, so that the second guiding surfaces of the second tooth portions of the engaging unit slide relative to the first guiding surfaces of the first tooth portions and each of the first tooth portions is moved to engage with a next corresponding second tooth portion, thereby allowing the second pliers portion being movable toward the first pliers portion. Hence, the clamping distance of the pliers can be adjusted to match with an object to be clamped.
Abstract:
A user equipment (UE) is arranged to send an uplink power reference signal to an enhanced Node B (eNB) associated with multiple reception points (RPs), to receive identification of an RP set and a downlink reference signal power level, to determine a path loss estimate for each downlink reference signal received from RPs of the RP set, to determine an uplink power level that is a function of the path loss estimates determined for the downlink signals received from the RPs of the RP set, and to use the determined uplink power level during communication with the multiple RPs.
Abstract:
An apparatus may include a communication interface and a processor circuit. The apparatus may further include a location analyzing module operable on the processor circuit to receive a first set of location information including a first radio information item from a first radio of a first wireless terminal via the communication interface, to scan a second set of location information to identify a second radio information item matching the first radio information item, and to index the second radio information item to a location entry in the second set of location information to determine a refined location for the first wireless terminal. Other embodiments are disclosed and claimed.
Abstract:
Briefly, in accordance with one or more embodiments, a pathloss gap between a downlink pathloss from a base station to a mobile station and an uplink pathloss from the mobile station to the base station is estimated. An initial offset value for uplink power control of the estimated pathloss gap is calculated based at least in part on said estimating. An offset value for an uplink data channel or an uplink control channel, or combinations thereof, is set based at least in part on the initial offset value. The pathloss gap for uplink power control is compensated using the set offset value.
Abstract:
A pseudo-differential switched-capacitor circuit, which can be applied to various signal processing circuits, employs a floating sampling technique and an integrator feedback loop for isolating a common mode voltage disturbance and restraining a charge injection effect. The pseudo-differential switched-capacitor circuit includes a differential floating sampling circuit that has a pseudo-differential architecture, and an integrator for reducing the charge injection effect within the differential floating sampling circuit.
Abstract:
The present invention is directed to a multiplying digital-to-analog converter (MDAC) and its method. First ends of capacitors are electrically coupled to an inverting input node of an amplifier, wherein two of the capacitors are alternatively configured as a feedback capacitor. Each capacitor is composed of at least two sub-capacitors. Second ends of capacitors are electrically coupled to an input signal via a number of sampling switches, and the second ends of the capacitors are electrically coupled to DAC voltages respectively via a number of amplifying switches. A sorting circuit is configured to sort the sub-capacitors, wherein the sorted sub-capacitors are then paired in a manner such that variance of mismatch among the sub-capacitors is thus averaged.
Abstract:
A switch circuit is provided. The switch circuit may include a first transistor having a source terminal to accept an input signal, a drain terminal to provide an output signal, and a gate; a power supply providing a gate voltage. The switch circuit may also include a circuit to couple a switch signal to the gate, wherein the circuit turns the first transistor ‘off’ for all values of the input signal when the switch signal is ‘low.’ A programmable gain amplifier (PGA) is also provided. The PGA may include an input stage having an input node to couple an input signal, and an output node to provide a gate signal, at least a first gain stage including a resistor and a switch circuit as above. A differential gain amplifier may be included to provide an output signal from the gain signal.
Abstract:
Pliers with a restoring function include an elastic element and two pliers bodies. The elastic element has two urging ends. The two pliers bodies have two pinching heads, two handles, and two pivotal parts. Each of the pivotal parts has a recess and a pivotal hole. A pivotal element goes through the two pivotal holes. The elastic element is disposed in the two recesses and penetrated by the pivotal element. Both urging ends of the elastic element are on opposite sides of the two recesses to urge sidewalls of the recesses, thereby opening the pliers. A buffer region is designed in each of the recesses for the corresponding urging end. When the opening angle of the pliers is greater than that is supported by the elastic element, at least one urging end of the elastic element releases its urging against the recess sidewall and moves in the buffer region. The pliers become relaxed then.