摘要:
The present invention provides, in one embodiment, a gate structure (100). The gate structure comprises a gate dielectric (105) and a gate (110). The gate dielectric includes a refractory metal and is located over a semiconductor substrate (115). The semiconductor substrate has a conduction band and a valence band. The gate is located over the gate dielectric and includes the refractory metal. The gate has a work function aligned toward the conduction band or the valence band. Other embodiments include an alternative gate structure (200), a method of forming a gate structure (300) for a semiconductor device (301) and a dual gate integrated circuit (400).
摘要:
A MOSFET structure with high-k gate dielectric layer and silicon or metal gates, amorphizing treatment of the high-k gate dielectric layer as with a plasma or ion implantation.
摘要:
The present invention provides a method of forming a dual work function metal gate microelectronics device 200. In one aspect, the method includes forming nMOS and pMOS stacked gate structures 315a and 315b. The nMOS and pMOS stacked gate structures 315a and 315b each comprise a gate dielectric 205, a first metal layer, 305 located over the gate dielectric 205 and a sacrificial gate layer 310 located over the first metal layer 305. The method further includes removing the sacrificial gate layer 310 in at least one of the nMOS or pMOS stacked gate structures, thereby forming a gate opening 825 and modifying the first metal layer 305 within the gate opening 825 to form a gate electrode with a desired work function.
摘要:
The present invention provides a semiconductor device, a method of manufacture therefor, and a method for manufacturing an integrated circuit. The semiconductor device (100), among other possible elements, includes a first transistor (120) located over a semiconductor substrate (110), wherein the first transistor (120) has a metal gate electrode (135) having a work function, and a second transistor (160) located over the semiconductor substrate (110) and proximate the first transistor (120), wherein the second transistor (160) has a plasma altered metal gate electrode (175) having a different work function.
摘要:
The present invention provides a system for producing a triple-gate transistor segment (300), utilizing a standard semiconductor substrate (302). The substrate has a plurality of isolation regions (304) formed along its upper surface in a distally separate relationship, defining a channel region (306). A form structure (308) is disposed atop the isolation regions, and defines a channel body area (310) over the channel region. A channel body structure (316) is disposed within the channel body area, and is engineered to provide a blunted corner or edge (318) along a perimeter of its upper exposed surface. The form structure is then removed, and subsequent processing is performed.
摘要:
The present invention pertains to forming a transistor in the absence of hydrogen, or in the presence of a significantly reduced amount of hydrogen. In this manner, a high-k material can be utilized to form a gate dielectric layer in the transistor and facilitate device scaling while mitigating defects that can be introduced into the high-k material by the presence of hydrogen and/or hydrogen containing compounds.
摘要:
The present invention provides a system for producing a triple-gate transistor segment (300), utilizing a standard semiconductor substrate (302). The substrate has a plurality of isolation regions (304) formed along its upper surface in a distally separate relationship, defining a channel region (306). A form structure (308) is disposed atop the isolation regions, and defines a channel body area (310) over the channel region. A channel body structure (316) is disposed within the channel body area, and is engineered to provide a blunted corner or edge (318) along a perimeter of its upper exposed surface. The form structure is then removed, and subsequent processing is performed.
摘要:
A MOSFSET structure with high-k gate dielecttrics for silicon or metal gates with gate dielectric liquid-based oxidation surface treatments prior to gate material desposition and gate formation.
摘要:
The present invention provides methods for the preparation of ruthenium metal films from liquid ruthenium complexes of the formula (diene)Ru(CO)3, wherein “diene” refers to linear, branched, or cyclic dienes, bicyclic dienes, tricyclic dienes, fluorinated derivatives thereof, combinations thereof, or derivatives thereof additionally containing heteroatoms such as halide, Si, S, Se, P, As, N, or O, in the presence of an oxidizing gas.
摘要:
A high-selectivity via etching process. The process includes the steps of: forming an etchstop layer 840 of a material selected from the group consisting of Ti--Al, Ti--Al--N, Ta--Al, Al--N, Ti--Al/Ti--N, Ti--Al--N/Ti--N, Ta--Al/Ti--N, and Ti--Al/Ti--Al--N; forming a dielectric layer over the etchstop layer; and etching the dielectric layer with a fluorine-bearing etchant.