Abstract:
Mechanical devices having bistable positions are utilized to form switches and memory devices. The devices are actuatable to different positions and may be coupled to a transistor device in various configurations to provide memory devices. Actuation mechanisms include electrostatic methods and heat. In one form, the mechanical device forms a gate for a field effect transistor. In a further form, the device may be a switch that may be coupled to the transistor in various manners to affect its electrical characteristics when on and off. The memory switch in one embodiment comprises side walls formed with tensile or compressive films. A cross point switch is formed from a plurality of intersecting conductive rows and columns of conductors. Actuatable switches are positioned between each intersection of the rows and columns such that each intersection is independently addressable.
Abstract:
A gated metal oxide semiconductor field effect transistor (MOSFET) gain cell is formed with a flow channel for molecule flow. The flow channel is formed under the gate, and between a source and drain of the transistor. The molecule flow modulates a gain of the transistor. Current flowing between the source and drain is representative of charges on the molecules flowing through the flow channel. A plurality of individually addressable gain cells are coupled between chambers containing samples to measure charges on molecules in the samples passing through the gain cells.
Abstract:
A densely packed array of vertical semiconductor devices, having pillars, deep trench capacitors, vertical transistors, and methods of making thereof are disclosed. The pillars act as transistor channels, and may be formed utilizing the application of hybrid resist over a block of semiconductor material. Drain doped regions are formed on the top of each pillar. The source doped regions and the plate doped regions are self-aligned and are created by diffusion in the trenches surrounding the pillars. The array has columns of bitlines and rows of wordlines. The capacitors are formed by isolating n+ polysilicon in trenches separating said pillars. The array is suitable for GBit DRAM applications because the deep trench capacitors do not increase array area. The array may have an open bitline architecture, where the plate region is common to all the storage nodes or a folded architecture with two wordlines that pass through each cell having stacked transistors, where one wordline is active and the other is passing for each cell.
Abstract:
A back-plane for a semiconductor device, includes an oxidized substrate, a metal film formed on the oxidized substrate forming a back-gate, a back-gate oxide formed on the back-gate, and a silicon layer formed on the back-gate oxide.
Abstract:
A light emitting device is disclosed comprising a bottom layer of electrically conductive material. A block of electrically insulating material is disposed on the bottom layer. At least a portion of the block is optically transparent. A top layer of electrically conductive material is disposed on the block. A plurality of discrete nano-crystals of a material selected from the group consisting of Group IV, Group III-V, and Group II-VI is disposed within the block, and are thereby electrically insulated from the top and bottom layers. Also provided are bottom and top electrodes connected to the bottom and top layers, respectively, for applying a voltage therebetween.
Abstract:
A back-plane ferroelectric memory apparatus employing a read transistor, a write transistor and a ferroelectric capacitor storage means. A back plane forms a gate region underneath the read transistor with the potential of the back plane affected by polarization of the ferroelectric capacitor. The write and read transistors are different, the write transistor may be a vertical structure and the read transistor may be a write transistor and the write transistor's drain is connected to the back plane of read transistor and a plate of the ferroelectric capacitor.
Abstract:
The present invention relates to a method for interconnecting, through high-density micro-post wiring, multiple semiconductor wafers with lengths of about a millimeter or below. Specifically, the method of the present invention comprises etching at least one hole, defined by walls, at least partly through a semiconducting material; forming a layer of electrically insulating material to cover said walls; and forming an electrically conductive material on said walls within the channel of the hole. Microelectronic devices containing the micro-post wiring of the present invention are also disclosed herein.
Abstract:
The control of barriers to carrier flow in a contact between a metal and a higher band gap semiconductor employing an intermediate lower band gap semiconductor with doping and greater than 1.5% lattice mismatch. A WSi metal contact of doped InAs on GaAs of 7.times.10.sup.-6 ohm/cm.sup.2 is provided.This is a continuation application of pending prior application Ser. No. 183,473, filed on Apr. 15, 1988 now abandoned which is a continuation of Ser. No. 876,063, filed on June 14, 1986, now abandoned.
Abstract:
Unpinned epitaxial metal-oxide-compound semiconductor structures are disclosed and a method of fabricating such structures is described. Epitaxial layers of compound semiconductor are grown by MBE which result in the formation of a smooth surface having a stabilized reconstruction. An elemental semiconductor layer is deposited epitaxially in situ with the compound semiconductor layer which unpins the surface Fermi level. A layer of insulator material is then deposited on the elemental semiconductor layer by PECVD. In one embodiment, the compound semiconductor is GaAs and the elemental semiconductor is Si. The insulator material is a layer of high quality SiO.sub.2. A metal gate is deposited on the SiO.sub.2 layer to form an MOS device. The epitaxial GaAs layer has a density of states which permits the interface Fermi level to be moved through the entire forbidden energy gap. In another embodiment, the SiO.sub.2 deposition completely consumes the interface Si layer so that the resulting MOS device comprises SiO.sub.2 directly overlying the GaAs layer.
Abstract:
A heterojunction bipolar transistor having an ohmic contact at the intersection of the base and an adjacent region serving as emitter or collector that forms an ohmic contact to the base and a Schottky barrier to the adjacent emitter or collector. A GaAs-GaAlAs device with a platinum or palladium electrode over the intersection between collector and base and forming an ohmic contact to a p-base region and a Schottky barrier with an n-collector region thereof.