Abstract:
In an image-forming apparatus, a temperature sensor is situated in the position where the sensor is insusceptible to steam. The position is, for example, a portion, of a discharge-sensor lever, where a printing material abuts on the discharge-sensor lever. Accordingly, the temperature sensor becomes insusceptible to steam, whereby the image-forming apparatus can more appropriately control the fixing temperature than conventional image-forming apparatuses. In other words, the image-forming apparatus can more reduce the incidence rate of defects, such as increase, due to excess heating, in the amount of hot-offsets and curls, deterioration of loading capacity, and defective fixing due to scarcity of the amount of heat, than the conventional image-forming apparatuses. Moreover, by determining a threshold temperature every time when a printing material passes through a heat-fixing unit, a problem can be alleviated, in which, at the beginning of a series of paper passage, the amount of fluctuation in detected temperature becomes significantly large.
Abstract:
The image heating apparatus for heating a toner image formed on a recording material, includes a rotatable member; heating device for heating an outer peripheral surface of the rotatable member, the heating device including a heater for forming a heating nip portion in cooperation with the rotatable member; back-up device for forming a conveying nip portion in cooperation with the rotatable member, the conveying nip portion conveying the recording material; and control device for controlling a temperature of the heater and a rotation of the rotatable member; wherein the apparatus has a cleaning mode to remove toner from the heating device, wherein the control device, in the cleaning mode, starts energizing the heater to dissipate heat in a condition that the rotatable member stops and afterward stops energizing the heater, and wherein the control device rotates the rotatable member until a part which forms a heating nip portion in a peripheral direction of the rotatable member reaches the conveying nip portion. By the virtue of the present invention, it prevents stain caused by the off-set of toner the recording material in an image heating apparatus.
Abstract:
The present invention provides a method enabling the high purification of a niobium compound and/or tantalum compound in a simplified manner at a low cost. This is accomplished by providing a method enabling the high purification of a niobium compound and/or tantalum compound comprising the steps of preparing a solution containing niobium and/or tantalum, allowing a precipitate comprising niobium and/or tantalum to develop, separating the precipitate by filtration from the filtrate, converting the precipitate to a liquid melt or taking the filtrate, and separating a niobium compound from a tantalum compound or vice versa by utilizing the difference in solubility to the solvent between the niobium compound and the tantalum compound.
Abstract:
An image heating apparatus has a heating member, a flexible sleeve, a guide member, a flange member, and a pressure member forming a nip part to nip and convey the heating member and the recording material through the sleeve. In this structure, in a recording material movement direction, a sliding-rubbing part of the flange member on a downstream side of the nip part has a shape to project the sleeve toward the downstream side. Alternately, the guide member may have a plurality of ribs on both an upstream side and downstream side of the nip.
Abstract:
The invention aims at providing a platinum black material, without using an expensive and rare material, which is excellent in CO poisoning inhibiting effect, H2S poisoning inhibiting effect, SO4 poisoning inhibiting effect and HCHO poisoning inhibiting effect, and a method for fluorinating platinum black. The platinum black material is characterized by fluorine adsorbed on its surface. The method for fluorinating platinum black is characterized by allowing platinum black to stand in a mixed gas atmosphere of n inert gas and fluorine in a low-pressure chamber to make fluorine adsorbed on the surface of the platinum black.
Abstract:
It is intended to provide a method of producing a hollow construct, which may be in various shapes such as a fiber or a film as well as in various sizes and has chemical resistance, made of a fluorinated hydrocarbon polymer, a fluorinated carbon polymer or a polymer carrying a nitrogen-containing group, a silicon-containing group, an oxygen-containing group, a phosphorus-containing group or a sulfur-containing group having been introduced into the above-described polymer; and a hollow construct obtained by this method. The method of producing a hollow construct as described above is characterized by comprising the fluorination step wherein a construct made of a hydrocarbon polymer or a polymer carrying a nitrogen-containing group, a silicon-containing group, an oxygen-containing group, a phosphorus-containing group or a sulfur-containing group having been introduced into the above-described polymer is brought into contact with a treating gas containing fluorine under definite conditions and thus the treating gas is allowed to penetrate from the outer surface of the construct toward the inside thereof to thereby fluorinate the construct excluding the core part, and the removal step wherein the core part having been not fluorinated as described above is removed.
Abstract:
The heat fixing apparatus includes a fixing heater and a pressure roller. The fixing heater has a plurality of resistance-type heat generation layers which are different in heat distribution in the longitudinal direction perpendicular to the direction of conveying a recording material. The recording material P is heated when passed through a fixing nip portion formed between the fixing heater and the pressure roller. The pressurization conditions between the fixing heater and the pressure roller can be changed. The heat fixing apparatus includes a fixing member which adjusts the lengthwise heat distribution of the fixing heater by changing the applied current proportion of the plurality of resistance-type heat generation layers according to the pressurization conditions between the fixing heater and the pressure roller.
Abstract:
An object of the invention is to provide a method for producing a laminated film comprising at least two resin films bonded together, which is capable of increasing the adhesiveness of the bonding surface and forming a laminated film with high reliability. The method for producing a laminated film according to the invention comprising at least two resin films laminated together, which comprises: a fluorination treatment step comprising bringing a fluorine and oxygen atoms-containing treatment gas into contact with at least a partial region of the surface of at least one of the two resin films to increase the adhesiveness of the region; and a bonding step comprising bonding the two resin films together using, as a bonding surface, the surface that has been brought into contact with the treatment gas.
Abstract:
The heat fixing apparatus includes a fixing heater and a pressure roller. The fixing heater has a plurality of resistance-type heat generation layers which are different in heat distribution in the longitudinal direction perpendicular to the direction of conveying a recording material. The recording material P is heated when passed through a fixing nip portion formed between the fixing heater and the pressure roller. The pressurization conditions between the fixing heater and the pressure roller can be changed. The heat fixing apparatus includes a fixing member which adjusts the lengthwise heat distribution of the fixing heater by changing the applied current proportion of the plurality of resistance-type heat generation layers according to the pressurization conditions between the fixing heater and the pressure roller.
Abstract:
A carbon nanotube aggregate and a method for forming a carbon nanotube aggregate are provided. The carbon nanotube aggregate can be formed by treating carbon nanotubes with fluorine gas and sintering the resulting fluorinated carbon nanotubes. A carbon nanotube aggregate can be formed which does not contain a binder or resin matrix.