Planar waveguide optical isolator in thin silicon-on-isolator (SOI) structure
    37.
    发明授权
    Planar waveguide optical isolator in thin silicon-on-isolator (SOI) structure 失效
    薄硅隔离器(SOI)结构中的平面波导光隔离器

    公开(公告)号:US07113676B2

    公开(公告)日:2006-09-26

    申请号:US11005286

    申请日:2004-12-06

    CPC classification number: G02B6/1228 G02B6/125 G02B6/4207

    Abstract: A planar optical isolator is formed within the silicon surface layer of an SOI structure. A forward-directed signal is applied to an input waveguiding section of the isolator and thereafter propagates through a non-reciprocal waveguide coupling region into an output waveguide section. A rearward-directed signal enters via the output waveguide section and is thereafter coupled into the non-reciprocal waveguide structure, where the geometry of the structure functions to couple only a small amount of the reflected signal into the input waveguide section. In one embodiment, the non-reciprocal structure comprises an N-way directional coupler (with one output waveguide, one input waveguide and N−1 isolating waveguides). In another embodiment, the non-reciprocal structure comprises a waveguide expansion region including a tapered, mode-matching portion coupled to the output waveguide and an enlarged, non-mode matching portion coupled to the input waveguide such that a majority of a reflected signal will be mismatched with respect to the input waveguide section. By cascading a number of such planar SOI-based structures, increased isolation can be achieved—advantageously within a monolithic arrangement.

    Abstract translation: 在SOI结构的硅表面层内形成平面光隔离器。 正向信号被施加到隔离器的输入波导部分,然后通过非互易波导耦合区域传播到输出波导部分中。 后向信号经由输出波导部分进入,然后耦合到不可逆波导结构中,其中结构的几何结构仅将少量的反射信号耦合到输入波导部分中。 在一个实施例中,非互易结构包括N路定向耦合器(具有一个输出波导,一个输入波导和N-1个隔离波导)。 在另一个实施例中,不可逆结构包括波导扩展区域,其包括耦合到输出波导的锥形模式匹配部分和耦合到输入波导的放大的非模式匹配部分,使得反射信号的大部分将 相对于输入波导部分不匹配。 通过级联多个这种平面的基于SOI的结构,可以实现增加的隔离 - 有利地在单片布置中。

    Wafer-level opto-electronic testing apparatus and method
    38.
    发明授权
    Wafer-level opto-electronic testing apparatus and method 有权
    晶圆级光电测试仪器及方法

    公开(公告)号:US07109739B2

    公开(公告)日:2006-09-19

    申请号:US11075430

    申请日:2005-03-08

    CPC classification number: G02B6/30 G02B6/34 G02B2006/12107

    Abstract: A wafer-level testing arrangement for opto-electronic devices formed in a silicon-on-insulator (SOI) wafer structure utilizes a single opto-electronic testing element to perform both optical and electrical testing. Beam steering optics may be formed on the testing element and used to facilitate the coupling between optical probe signals and optical coupling elements (e.g., prism couplers, gratings) formed on the top surface of the SOI structure. The optical test signals are thereafter directed into optical waveguides formed in the top layer of the SOI structure. The opto-electronic testing element also comprises a plurality of electrical test pins that are positioned to contact a plurality of bondpad test sites on the opto-electronic device and perform electrical testing operations. The optical test signal results may be converted into electrical representations within the SOI structure and thus returned to the testing element as electrical signals.

    Abstract translation: 用于在绝缘体上硅(SOI)晶片结构中形成的光电器件的晶片级测试装置利用单个光电测试元件执行光学和电学测试。 光束转向光学元件可以形成在测试元件上,并且用于促进光学探针信号与形成在SOI结构的顶表面上的光耦合元件(例如,棱镜耦合器,光栅)之间的耦合。 此后,光学测试信号被引导到形成在SOI结构的顶层中的光波导中。 光电测试元件还包括多个电测试引脚,其被定位成接触光电器件上的多个接合焊盘测试点并执行电测试操作。 光学测试信号结果可以转换为SOI结构内的电气表示,并因此作为电信号返回到测试元件。

    Interfacing multiple wavelength sources to thin optical waveguides utilizing evanescent coupling
    39.
    发明授权
    Interfacing multiple wavelength sources to thin optical waveguides utilizing evanescent coupling 有权
    使用ev逝耦合将多个波长源连接到薄光波导上

    公开(公告)号:US07058261B2

    公开(公告)日:2006-06-06

    申请号:US10935146

    申请日:2004-09-07

    CPC classification number: G02B6/12007 G02B6/124 G02B6/34

    Abstract: An arrangement for achieving and maintaining high efficiency coupling of light between a multi-wavelength optical signal and a relatively thin (e.g., sub-micron) silicon optical waveguide uses a prism coupler in association with an evanescent coupling layer. A grating structure having a period less than the wavelengths of transmission is formed in the coupling region (either formed in the silicon waveguide, evanescent coupling layer, prism coupler, or any combination thereof) so as to increase the effective refractive index “seen” by the multi-wavelength optical signal in the area where the beam exiting/entering the prism coupler intercepts the waveguide surface (referred to as the “prism coupling surface”). The period and/or duty cycle of the grating can be controlled to modify the effective refractive index profile in the direction away from the coupling region so as to reduce the effective refractive index from the relatively high value useful in multi-wavelength coupling to the lower value associated with maintaining confinement of the optical signals within the surface waveguide structure, thus reducing reflections along the transition region.

    Abstract translation: 用于实现和维持多波长光信号和较薄(例如亚微米)硅光波导之间的高效率耦合的布置使用与渐逝耦合层相关联的棱镜耦合器。 在耦合区域(形成在硅波导,ev逝耦合层,棱镜耦合器或其任何组合中)形成具有小于透射波长的周期的光栅结构,以便通过“看到”来提高有效折射率 离开/进入棱镜耦合器的光束截取波导表面(称为“棱镜耦合表面”)的区域中的多波长光信号。 可以控制光栅的周期和/或占空比以在远离耦合区域的方向上改变有效折射率分布,以便将有效折射率从在多波长耦合中的有用折射率降低到较低的值 与保持表面波导结构内的光信号的限制相关联的值,从而减少沿着过渡区域的反射。

Patent Agency Ranking