Abstract:
A display may have a backlight. The display backlight may have a light guide plate. An array of light-emitting diodes may emit light into the edge of the light guide plate. The array of light-emitting diodes may be mounted to a flexible printed circuit. A layer of adhesive tape may attach the light guide plate to the flexible printed circuit. The tape layer may have upper and lower adhesive layers on a carrier film. The carrier film may be formed from a metal-coated polymer layer, a high-low dielectric stack, a metal foil, or other reflective or non-reflective structures. A stiffener may be provided to facilitate handling of the adhesive tape.
Abstract:
A display device is provided. The display device includes a light source emitting a blue light and a light emitting layer including a first group of red quantum dots and a second group of green quantum dots. The light emitting layer is configured to absorb a first portion of the blue light from the light source to emit red light and green light and to transmit a second portion of the blue light. The display device also includes dichroic filter layers to improve light recycling and backlight efficiency.
Abstract:
An electronic device may have a display. Inactive portions of the display may be masked using an opaque masking layer. An opening may be provided in the masking layer. A camera may receive light through the opening in the opaque masking layer. The display may include upper and lower polarizers, a color filter layer, and a thin-film transistor layer. The upper polarizer may have an unpolarized window aligned with the opening in the opaque masking layer for the camera, a logo, or another internal structure. The unpolarized window may be formed from openings in polarizer layers such as a polyvinyl alcohol layer and optical retarder layers. The openings may pass through all or less than all of the polarizer layers. The openings may be filled with transparent filler material. The polarizer may include a try-acetyl cellulose layer that continuously covers the opening in other polarizer layers.
Abstract:
An electronic device housing may have upper and lower portions that are attached with a hinge. At least one portion of the housing may have a rear planar surface and peripheral sidewalls having edges. A display module may be mounted in the housing. The display module may have glass layers such as a color filter glass layer and a thin-film transistor substrate. The color filter glass layer may serve as the outermost glass layer in the display module. The edges of the display module may be aligned with the edges of the peripheral housing sidewalls to create the appearance of a borderless display for the electronic device. The display module may be provided with an opening that allows a camera or other electronic components to receive light. Traces may be provided on the underside of the thin-film transistor substrate to serve as signal paths for the electrical components.
Abstract:
An electronic device may be provided with a display mounted in a housing. The display may include a liquid crystal display module and a reflective polarizer having an in-plane optical axis. The display may also include a backlight unit that includes a light source, a light guide element, and a reflector film coupled to a backside of the light guide element. The display may also include a light retardation layer such as a quarter wave film. The quarter wave film may be arranged between the reflective polarizer and the reflector film of the backlight unit. During operation of the display, partially polarized light that is output from a front side of the light guide element may have a first component parallel to the in-plane optical axis and a second component perpendicular to the in-plane optical axis of the reflective polarizer. The second component may be reflected from the reflective polarizer.
Abstract:
A display may receive image data to be displayed for a user of an electronic device. Display driver circuitry in the display may include a timing controller that receives the image data. The timing controller can analyze frames of the image data to determine average luminance values for the frames. The display may include an array of organic light-emitting diode display pixels. Each display pixel may include a light-emitting diode. A transistor in each display pixel may be coupled in series with the light-emitting diode between positive and ground power supply terminals. The timing controller can limit peak luminance in the image data that is displayed on the array of display pixels as a function of average luminance. The timing controller can also direct power regulator circuitry to adjust a power supply voltage applied to the positive power supply terminal based on the average luminance.
Abstract:
A display may include a color filter layer, a liquid crystal layer, and a thin-film transistor layer. A camera window may be formed in the display to accommodate a camera. The camera window may be formed by creating a notch in the thin-film transistor layer that extends inwardly from the edge of the thin-film transistor layer. The notch may be formed by scribing the thin-film transistor layer around the notch location and breaking away a portion of the thin-film transistor layer. A camera window may also be formed by grinding a hole in the display. The hole may penetrate partway into the thin-film transistor layer, may penetrate through the transistor layer but not into the color filter layer, or may pass through the thin-film transistor layer and partly into the color filter layer.
Abstract:
An electronic device may be provided with a display. The display may be formed from liquid crystal display pixels, organic light-emitting diode pixels, or other pixels. The display may have an active area that is bordered along at least one edge by an inactive area. The active area contains pixels and displays images. The inactive area does not contain any pixels and does not display images. The inactive area may have a layer of black ink or other masking material to block internal components from view. The active area may have an opening that contains an isolated portion of the inactive area or may contain a recess into which a portion of the inactive area protrudes. An electrical component such as a speaker, camera, light-emitting diode, light sensor, or other electrical device may be mounted in the inactive area in the recess or opening of the active area.
Abstract:
An electronic device may have one or more displays that produce images for a user. The display may include an array of light-emitting diodes. Each light-emitting diode in the array of light-emitting diodes may include a plurality of vias. The vias may be arranged in an array of rows and columns. The light-emitting diodes in the array may share a common cathode. The common cathode may include a conductive layer formed from a reflective material. The conductive layer may be formed in a grid that defines a plurality of openings for the light-emitting diodes or may be formed around the periphery of the array. The array may include light-emitting diodes of two different colors in a head-to-tail arrangement, connected in series, or that share a common cathode. The array may include light-emitting diodes of three different colors that are vertically stacked.
Abstract:
A lenticular display may be formed with convex curvature. The lenticular display may have a lenticular lens film with lenticular lenses that extend across the length of the display. The lenticular lenses may be configured to enable stereoscopic viewing of the display. To enable more curvature in the display while ensuring satisfactory stereoscopic display performance, the display may have stereoscopic zones and non-stereoscopic zones. A central stereoscopic zone may be interposed between first and second non-stereoscopic zones. The non-stereoscopic zones may have more curvature than the stereoscopic zone. To prevent crosstalk within the lenticular display, a louver film may be incorporated into the display. The louver film may have a plurality of transparent portions separated by opaque walls. The opaque walls may control the emission angle of light from the display, reducing crosstalk. The louver film may be interposed between the lenticular lens film and the display panel.