Abstract:
A method for forming a variable capacitor including a conductive strip covering the inside of a cavity, and a flexible conductive membrane placed above the cavity, the cavity being formed according to the steps of: forming a recess in the substrate; placing a malleable material in the recess; having a stamp bear against the substrate at the level of the recess to give the upper part of the malleable material a desired shape; hardening the malleable material; and removing the stamp.
Abstract:
An electromechanical resonator includes a monocrystalline-silicon substrate (S) provided with an active zone (ZA) delimited by an insulating region, a vibrating beam (10) anchored by at least one of its free ends on the insulating region and including a monocrystalline-silicon vibrating central part (12), and a control electrode (E) arranged above the beam and bearing on the active zone. The central part (12) of the beam is separated from the active zone (ZA) and from the control electrode (E).
Abstract:
Acoustic resonator device (1) includes an active element (6) and a support provided with a membrane (5). The active element (6) is provided with at least one piezoelectric layer (10) and is surmounted by a multilayer stack (12). The multilayer stack (12) is provided with at least three layers, including at least one layer (15) of high acoustic impedance and at least one layer (13) of low acoustic impedance. An integrated circuit including at least one such acoustic resonator device is also disclosed.
Abstract:
A method of predicting the formation of water condensation on a surface in contact with humid air includes the steps of placing on the surface an element that adopts initially a temperature approximately equal to a temperature of the surface. The element is thermally cycled. Each cycle includes a cooling phase and a heating phase. The cooling phase includes first and second steps. Electric current is supplied to a cooling mechanism in the first step of the cooling phase to decrease the temperature of the element to below the temperature of the surface. An electric current is supplied to the cooling mechanism in the second step of the cooling phase to further decrease the temperature of the element. The current of the first step is greater than the current of the second step, such that the temperature of the element decreases more rapidly in the first step than in the second step. The formation of water condensation on the surface is predicted based upon the formation of water condensation on the element.
Abstract:
The disclosure relates to a method of manufacturing vibratory elements, comprising forming on a substrate a multilayer structure by an integrated circuit manufacturing method, the multilayer structure comprising an element susceptible of vibrating when it is subjected to an electrical signal, and electrodes for transmitting an electrical signal to the vibratory element, the vibratory element comprising a mechanical coupling face that is able to transmit to control element vibrations perceptible by a user.
Abstract:
A microresonator comprising a single-crystal silicon resonant element and at least one activation electrode placed close to the resonant element, in which the resonant element is placed in an opening of a semiconductor layer covering a substrate, the activation electrode being formed in the semiconductor layer and being level at the opening.
Abstract:
The integrated circuit comprises a support substrate having opposite first and second main surfaces. A cavity passes through the support substrate and connects the first and second main surfaces. The integrated circuit comprises a device with a mobile element, the mobile element and a pair of associated electrodes of which are included in a cavity. An anchoring node of the mobile element is located at the level of the first main surface. The integrated circuit comprises a first elementary chip arranged at the level of the first main surface and electrically connected to the device with a mobile element.
Abstract:
The invention relates to a device consisting of an electromechanical microswitch comprising mobile beam (2). According to the invention, at least part (14) of the beam forms the piezoelectric element of a piezoelectric actuator.
Abstract:
A microresonator comprising a single-crystal silicon resonant element and at least one activation electrode placed close to the resonant element, in which the resonant element is placed in an opening of a semiconductor layer covering a substrate, the activation electrode being formed in the semiconductor layer and being level at the opening.
Abstract:
Acoustic resonator device (1) includes an active element (6) and a support provided with a membrane (5). The active element (6) is provided with at least one piezoelectric layer (10) and is surmounted by a multilayer stack (12). The multilayer stack (12) is provided with at least three layers, including at least one layer (15) of high acoustic impedance and at least one layer (13) of low acoustic impedance. An integrated circuit including at least one such acoustic resonator device is also disclosed.