摘要:
A conductive top surface of a replacement gate stack is recessed relative to a top surface of a planarization dielectric layer by at least one etch. A dielectric capping layer is deposited over the planarization dielectric layer and the top surface of the replacement gate stack so that the top surface of a portion of the dielectric capping layer over the replacement gate stack is vertically recessed relative to another portion of the dielectric layer above the planarization dielectric layer. The vertical offset of the dielectric capping layer can be employed in conjunction with selective via etch processes to form a self-aligned contact structure.
摘要:
The present invention, in one embodiment, provides a method of forming a semiconductor device that includes providing a substrate including a first conductivity type region and a second conductivity type region; forming a gate stack including a gate dielectric atop the first conductivity type region and the second conductivity type region of the substrate and a first metal gate conductor overlying the high-k gate dielectric; removing a portion of the first metal gate conductor that is present in the first conductivity type region to expose the gate dielectric present in the first conductivity type region; applying a nitrogen based plasma to the substrate, wherein the nitrogen based plasma nitrides the gate dielectric that is present in the first conductivity type region and nitrides the first metal gate conductor that is present in the second conductivity type region; and forming a second metal gate conductor overlying at least the gate dielectric that is present in the first conductivity type region.
摘要:
A method for monitoring a nitridation process, including: (a) providing a semiconductor substrate; (b) forming a first dielectric layer on a top surface of the substrate; (c) introducing a quantity of interfacial species into the substrate; (d) removing the first dielectric layer; (e) forming a second dielectric layer on the top surface of the substrate; (f) measuring the density of interface traps between the substrate and the second dielectric layer; (g) providing a predetermined relationship between the quantity of the interfacial species and the density of the interface traps; and (h) determining the quantity of the interfacial species introduced based on the relationship.
摘要:
A method for monitoring a nitridation process, including: (a) providing a semiconductor substrate; (b) forming a first dielectric layer on a top surface of the substrate; (c) introducing a quantity of interfacial species into the substrate; (d) removing the first dielectric layer; (e) forming a second dielectric layer on the top surface of the substrate; (f) measuring the density of interface traps between the substrate and the second dielectric layer; (g) providing a predetermined relationship between the quantity of the interfacial species and the density of the interface traps; and (h) determining the quantity of the interfacial species introduced based on the relationship.
摘要:
A process and composition for cleaning debris from a stack etch/ion implanted CMOS device which includes a tungsten gate conductor. The composition includes sulfuric acid and hydrogen peroxide in a volume ratio of at least about 6:1. In the process the composition contacts the CMOS device at atmospheric pressure and a temperature of between about 70° C. and about 90° C.
摘要:
A method and structure for increasing the threshold voltage of vertical semiconductor devices. The method comprises creating a deep trench in a substrate whose semiconductor material has an orientation plane perpendicular to the surface of the substrate. Then, vertical transistors are formed around and along the depth of the deep trench. Next, two shallow trench isolation are formed such that they sandwich the deep trench in an active region and the two shallow trench isolation regions abut the active region via planes perpendicular to the orientation plane. Then, the channel regions of the vertical transistors are exposed to the atmosphere in the deep trench and then chemically etched to planes parallel to the orientation plane. Then, a gate dielectric layer is formed on the wall of the deep trench. Finally, the deep trench is filled with poly-silicon to form the gate for the vertical transistors.
摘要:
In the process of forming a trench capacitor, the conductive strap connecting the center electrode of the capacitor with a circuit element in the substrate, such as the pass transistor of a DRAM cell, is separated from the crystalline substrate material by a barrier layer of silicon carbide formed during the process of etching the material within the trench, such as an oxide collar, using a reactive ion etch process with an etchant gas that contains carbon, such as C4F8.
摘要:
A replacement metal gate structure and methods of manufacturing the same is provided. The method includes forming at least one trench structure and forming a liner of high-k dielectric material in the at least one trench structure. The method further includes adjusting a height of the liner of high-k dielectric material. The method further includes forming at least one workfunction metal over the liner, and forming a metal gate structure in the at least one trench structure, over the at least one workfunction metal and the liner of high-k dielectric material.
摘要:
A gate stack structure for a transistor device includes a gate dielectric layer formed over a substrate; a first silicon gate layer formed over the gate dielectric layer; a dopant-rich monolayer formed over the first silicon gate layer; and a second silicon gate layer formed over the dopant-rich monolayer, wherein the dopant-rich monolayer prevents silicidation of the first silicon gate layer during silicidation of the second silicon gate layer.
摘要:
A structure and method for replacement metal gate (RMG) field effect transistors is disclosed. Silicide regions are formed on a raised source-drain (RSD) structure. The silicide regions form a chemical mechanical polish (CMP) stopping layer during a CMP process used to expose the gates prior to replacement. Protective layers are then applied and etched in the formation of metal contacts.