Abstract:
A drive backboard, a manufacturing method thereof, a display panel and a display device are provided. The drive backboard includes a plurality of pixel units and a plurality of spare electrode groups. Each pixel unit includes m subpixel units, and m is a positive integer greater than or equal to 2. Each spare electrode group includes two first spare electrodes and one second spare electrode; two adjacent ith subpixel units respectively use one first spare electrode in each spare electrode group and share one second spare electrode in each spare electrode group, where i is a positive integer from 1 to m.
Abstract:
A filter structure and a method for manufacturing the same, and a display device. The filter structure includes a base substrate and a plurality of filter units positioned on the base substrate, at least part of the filter units including a quantum dot filter layer. The filter units further include a reflective structure whose orthographic projection on the base substrate surrounds the orthographic projection of the quantum dot filter layer on the base substrate. A distance between a plane of the reflective structure away from the base substrate and the base substrate is greater than a distance between a plane of the quantum dot filter layer close to the base substrate and the base substrate.
Abstract:
The present disclosure provides a field of display technologies, and in particular, to a LTPS substrate and a fabricating method thereof, a thin film transistor thereof, an array substrate thereof, and a display device thereof. The LTPS substrate, able to be used for the fabrication of a thin film transistor, includes a light shielding layer, the light shielding layer mainly composed of amorphous silicon doped with a lanthanide element. The present disclosure mainly employs an amorphous silicon film layer doped with the lanthanide element as the light shielding layer of the LTPS substrate, which not only ensures the light shielding efficiency but also reduces the production process, and further prevents the occurrence of the H explosion problem due to H exuding during the ELA process.
Abstract:
The present application provides a thin film transistor and a method of fabricating the same, an array substrate and a display device. The thin film transistor includes: a gate electrode; an active layer including a first portion made of polysilicon and a second portion made of amorphous silicon; a source electrode and a drain electrode; and an ohmic contact layer. The second portion of the active layer is in contact with the source electrode and the drain electrode through the ohmic contact layer.
Abstract:
The present disclosure provides an array substrate, a method for manufacturing the array substrate and a display device. The array substrate includes a base substrate and a signal line provided in a display region at a first side of the base substrate, an electrode is provided at a second side of the base substrate, the second side of the base substrate is opposite to the first side of the base substrate, a via-hole penetrating through the base substrate is provided at a position of the base substrate at which the electrode is provided, a connecting electrode is provided in the via-hole, and the signal line is electrically connected to the electrode provided at the second side of the base substrate through the connecting electrode.
Abstract:
The present disclosure provides an array substrate and a method for manufacturing the same and a display panel and a display device comprising the same. The method for manufacturing the array substrate provided in the present disclosure comprises: forming a first metal layer; forming an uneven structure on a surface of the first metal layer; providing a photoresist on the surface of the first metal layer where the uneven structure has been formed; and exposing and developing the photoresist and etching the first metal layer so as to form a first metal pattern.
Abstract:
A thin film transistor, an array substrate and a display device are provided by the present disclosure. The thin film transistor is on a base substrate, a profile of a width edge of the channel includes an up-and-down curved section in a direction perpendicular to a surface of the base substrate.
Abstract:
A display device, a manufacturing method thereof, a driving method thereof and a display apparatus. The display device includes: a display panel; and an electrochromic device located on a light exiting side of the display panel. The electrochromic device and the display panel share a first base substrate and a first transparent electrode in the display panel that are close to the light exiting side of the display panel.
Abstract:
The present disclosure provides a method for manufacturing a display substrate, the display substrate and a display device. The method includes a step of forming a black matrix. The step of forming the black matrix includes: forming a metal pattern for the black matrix, the metal pattern being made of an amphoteric metal or an amphoteric metal alloy; and treating the metal pattern with an alkaline solution, so as to form the black matrix wherein a surface of black matrix has a concave-convex microstructure.
Abstract:
The present invention discloses a touch screen substrate and a method of manufacturing the same. The touch screen substrate includes a capacitance layer comprising a plurality of electrodes, a first cover layer formed on the capacitance layer; a plurality of conductive bridges located on the first cover layer and configured to be electrically connected to a part of the electrodes that are electrically isolated; and a plurality of electrical connection lines, configured to respectively be electrically connected to the respective conductive bridge so as to electrically connect the first electrode with a touch detecting circuit. A material layer for forming the electrical connection lines is different from a material layer for forming the conductive bridges such that the conductive bridges located below the electrical connection lines are not corroded when the material layer for the electrical connection lines is etched. Utilization of different chemical properties of copper and silver nanowires and ITO material and inclusion of a single patterning process increase productivity and yield.