Abstract:
A nonvolatile memory cell is provided. The cell has a charge filter, a tunneling gate, a ballistic gate, a charge storage layer, a source, and a drain with a channel defined between the source and drain. The charge filter permits transporting of charge carriers of one polarity type from the tunneling gate through the blocking material and the ballistic gate to the charge storage layer while blocking the transport of charge carriers of an opposite polarity from the ballistic gate to the tunneling gate. Further embodiments of the present invention provide a cell having a charge filter, a supplier gate, a tunneling gate, a ballistic gate, a source, a drain, a channel, and a charge storage layer. The present invention further provides an energy band engineering method permitting the memory cell be operated without suffering from disturbs, from dielectric breakdown, from impact ionization, and from undesirable RC effects.
Abstract:
A method for controlling an operating mode of a portable electronic device having a first plane and a second plane connected together comprises forming a magnet in the first plane, forming a magnetic flux sensor in a position of the second plane corresponding to the magnet for sensing magnetic flux, and controlling the operating mode of the portable electronic device according to the sensing result of the magnetic flux sensor.
Abstract:
A system for tracking elements employing fixed tags that are permanently attached internally or externally to elements. The tags include radio-frequency (RF) communication units that have wireless communication with RF communicators. The wireless communications between the RF tags and the RF communicators operate with a tag communication protocol that defines the operations and sequences for storing information into and retrieval of information from tags. Each communicator has a processor for controlling a security routine with the tag. Each tag has a tag memory having storage locations for storing security information, a controller for accessing the tag memory to access security information in response to the security routine and an I/O unit for electronic communication with the controller and for RF communication with the communicator.
Abstract:
In one embodiment, a structure includes a semiconductor chip including a communication element for performing a wireless communication function where the communication element has a communication core occupying a region of the semiconductor chip, a plurality of chip pads with two of the chip pads electrically connected to the communication core; a chip carrier for carrying the semiconductor chip where the chip carrier includes a plurality of carrier pads with two of the carrier pads connected to the two chip pads; and an antenna connected to the carrier pads and electrically connected to the chip pads and to the communication core.
Abstract:
A method of providing a memory cell comprises providing a semiconductor substrate including a body of a first conductivity type, first and second regions of a second conductivity type and a channel between the first and second regions; arranging a first insulator layer adjacent to the channel; arranging a charge storage region adjacent to the first insulator layer; arranging a second insulator layer adjacent to the charge storage region; arranging a first conductive region adjacent to the second insulator layer; arranging a filter adjacent to the first conductive region; and arranging a second conductive region adjacent to the filter. The second conductive region overlaps the first conductive region at an overlap surface. A line perpendicular to the overlap surface intersects at least a portion of the charge storage region.
Abstract:
A nonvolatile memory cell is provided. The memory cell comprises a storage transistor and an injector in a semiconductor substrate of a p-type conductivity. The injector comprises a first region of the p-type conductivity and a second region of an n-type conductivity. The storage transistor comprises a source, a drain, a channel, a charge storage region, and a control gate. The source and the drain have the p-type conductivity and are formed in a well of the n-type conductivity in the substrate with the channel of the well defined therebetween. The charge storage region is disposed over and insulated from the channel by a first insulator. The control gate is disposed over and insulated from the charge storage region by a second insulator. Further provided are methods operating the memory cell, including means for injecting electrons from the channel through the first insulator onto the charge storage region and means for injecting holes from the injector through the well through the channel through the first insulator onto the charge storage region.
Abstract:
A safety device is disclosed for use with a collar for a pet. The safety device includes a central member, a first lateral member and a second lateral member. The first lateral member is for pivotal and releasable engagement with the central member. The second lateral member is for pivotal and releasable engagement with the central member.
Abstract:
A system is provided and includes an array of cells, a first module, and a third module. The first module reads a state of a cell in the array to detect first bits stored in the cell. The third module, subsequent to the first module reading the state, performs a first operation on a first bit of the first bits and performs the first operation on a first of multiple signal inputs. The signal inputs indicate second bits of data to be stored in the cell. The third module performs a second operation on a second bit of the first bits and performs the second operation on a second one of the signal inputs. The first module, based on results of the first and second operations, performs a first erase operation or a first program operation on the cell to match the state of the cell to the second bits.
Abstract:
A memory device including nonvolatile memory cells arrayed in a first direction and in a second direction, a plurality of first lines extending in the first direction for coupling memory cells arrayed in the first direction, and a plurality of second lines extending in the second direction for coupling memory cells arrayed in the second direction. The memory device includes a plurality of decoders, including i) first decoders coupled to the first lines and ii) second decoders coupled to the second lines, for accessing any one or more of the memory cells in any order. The memory device includes a plurality of segments. Each segment includes different ones of the nonvolatile memory cells. A first one of the segments is juxtaposed to, in the second direction, a second one of the segments. The second one of the segments mirrors, in the second direction, the first one of the segments.
Abstract:
A robot and a method for recognizing human faces and gestures are provided, and the method is applicable to a robot. In the method, a plurality of face regions within an image sequence captured by the robot are processed by a first classifier, so as to locate a current position of a specific user from the face regions. Changes of the current position of the specific user are tracked to move the robot accordingly. While the current position of the specific user is tracked, a gesture feature of the specific user is extracted by analyzing the image sequence. An operating instruction corresponding to the gesture feature is recognized by processing the gesture feature through a second classifier, and the robot is controlled to execute a relevant action according to the operating instruction.