Abstract:
A semiconductor device includes an N-channel device and a P-channel device. The N-channel device includes a first source region, a first drain region, a first fin structure, and a gate. The P-channel device includes a second source region, a second drain region, a second fin structure, and the gate. The second source region, the second drain region, and the second fin structure are separated from the first source region, the first drain region, and the first fin structure by a channel stop layer.
Abstract:
A semiconductor device includes a substrate and an insulating layer formed on the substrate. A first device may be formed on the insulating layer. The first device may include a first fin formed on the insulating layer, a first dielectric layer formed on the first fin, and a partially silicided gate formed over a portion of the first fin and the first dielectric layer. A second device also may be formed on the insulating layer. The second device may include a second fin formed on the insulating layer, a second dielectric layer formed on the second fin, and a fully silicided gate formed over a portion of the second fin and the second dielectric layer.
Abstract:
A semiconductor device includes an N-channel device and a P-channel device. The N-channel device includes a first source region, a first drain region, a first fin structure, and a gate. The P-channel device includes a second source region, a second drain region, a second fin structure, and the gate. The second source region, the second drain region, and the second fin structure are separated from the first source region, the first drain region, and the first fin structure by an insulating layer.
Abstract:
A FinFET-type semiconductor device includes a fin structure on which a relatively thin amorphous silicon layer and then an undoped polysilicon layer is formed. The semiconductor device may be planarized using a chemical mechanical polishing (CMP) in which the amorphous silicon layer acts as a stop layer to prevent damage to the fin structure.
Abstract:
A semiconductor device may include a substrate and an insulating layer formed on the substrate. A first device may be formed on the insulating layer, including a first fin. The first fin may be formed on the insulating layer and may have a first fin aspect ratio. A second device may be formed on the insulating layer, including a second fin. The second fin may be formed on the insulating layer and may have a second fin aspect ratio different from the first fin aspect ratio.
Abstract:
A method forms fin structures for a semiconductor device. The method includes forming a first fin structure including a dielectric material and including a first side surface and a second side surface; forming a second fin structure adjacent the first side surface of the first fin structure; and forming a third fin structure adjacent the second side surface of the first fin structure. The second fin structure and the third fin structure are formed of a different material than the first fin structure.
Abstract:
A double-gate semiconductor device includes a substrate, an insulating layer, a fin and a gate. The insulating layer is formed on the substrate and the gate is formed on the insulating layer. The fin has a number of side surfaces, a top surface and a bottom surface. The bottom surface and at least a portion of the side surfaces of the fin are surrounded by the gate. The gate material surrounding the fin has a U-shaped cross-section at a channel region of the semiconductor device.
Abstract:
A method of forming multiple structures in a semiconductor device includes depositing a film over a conductive layer, etching a trench in a portion of the film and forming adjacent the sidewalls of the trench. The film may then be etched, followed by an of the conductive layer to form the structures.
Abstract:
A semiconductor device and method of fabrication are disclosed. The semiconductor device includes a liner composed of a high-K material. The liner has a portion separating a sidewall spacer from a gate and a portion separating the sidewall spacer from a layer of semiconductor material. The liner functions as an etch stop during formation of the sidewall spacer. The liner is removable by an etch process that has substantially no reaction with an isolation region formed in the layer of semiconductor material.
Abstract:
A semiconductor device may include a substrate and an insulating layer formed on the subtrate. A fin may be formed on the insulating layer and may include a number of side surfaces and a top surface. A first gate may be formed on the insulating layer proximate to one of the number of side surfaces of the fin. A second gate and may be formed on the insulating layer separate from the first gate and proximate to another one of number of side surfaces of the fin.