Abstract:
A lead wire and a pacemaker using the lead wire are disclosed. The lead wire, comprising: a lead body and a lead electrode at an end of the lead body, the lead electrode being electrically connected with the lead body, the lead electrode comprising a carbon nanotube structure, the carbon nanotube structure comprising at least one carbon nanotube film, the carbon nanotube structure having an electrode tip away from the lead body, and the electrode tip being in linear contact with an organ, wherein the electrode tip functions as a stimulating electrode, the at least one carbon nanotube film acts as a sensing electrode.
Abstract:
A neural graft includes a biological substrate, a carbon nanotube structure and a neural network. The carbon nanotube structure is located on the biological substrate. The carbon nanotube structure includes a number of carbon nanotube wires crossed with each other to define a number of pores. The neural network includes a number of neural cell bodies and a number of neurites branched from the neural cell bodies. An effective diameter of each pore is larger than or equal to a diameter of the neural cell body, the neurites substantially extend along the carbon nanotube wires such that the neurites are patterned.
Abstract:
A culture medium for growing at least one kind of cells is provided. The culture medium includes a carbon nanotube structure and a cell adhesion layer. The cell adhesion layer covers one surface of the carbon nanotube structure. The at least one kind of cells grows on the cell adhesion layer. In addition, a method for manufacturing a culture medium for growing at least one kind of cells is also provided.
Abstract:
A method for forming a culture medium includes the following steps. A carbon nanotube structure is provided. A hydrophilic layer is formed on a surface of the carbon nanotube structure. The hydrophilic layer is polarized to form a polar surface on the hydrophilic layer. A number of neurons are formed on the polar surface of the hydrophilic layer.
Abstract:
A method for culturing a number of cells includes the following steps. A culture medium is provided. The culture medium has a carbon nanotube structure and a hydrophilic layer. The hydrophilic layer is formed on a surface of the carbon nanotube structure. A polar layer is formed on a surface of the hydrophilic layer away from the carbon nanotube structure. The cells are seeded and cultured on the polar layer.
Abstract:
An epitaxial structure is provided. The epitaxial structure includes a substrate, an epitaxial layer and a carbon nanotube layer. The epitaxial layer is located on the substrate. The carbon nanotube layer is located between the substrate and the epitaxial layer. The carbon nanotube layer can be a carbon nanotube film drawn from a carbon nanotube array and including a plurality of successive and oriented carbon nanotubes joined end-to-end by van der Waals attractive force therebetween.
Abstract:
A nerve graft includes a carbon nanotube film structure, a protein layer, and a nerve network. The protein layer is located on a surface of the carbon nanotube film structure. The nerve network is positioned on a surface of the protein layer and far away from the carbon nanotube film structure.
Abstract:
A method for making a nerve graft includes the following steps. A culture layer including a lyophobic substrate, a carbon nanotube film structure, and a protein layer is provided. The carbon nanotube film structure is sandwiched between the lyophobic substrate and the protein layer. A number of nerve cells are seeded on a surface of the protein layer away from the lyophobic substrate. The nerve cells are cultured until a number of neurites branch from the nerve cells and are connected between the nerve cells.
Abstract:
A friction member for a brake mechanism in a camera shutter is provided. The friction member includes at least two carbon nanotube composite layers stacked on each other, each carbon nanotube composite layer includes a polymer and a carbon nanotube structure including a number of carbon nanotubes substantially oriented along a same direction. An angle defined by the carbon nanotubes oriented along the same direction in adjacent carbon nanotube composite layers ranges from greater than 0 degrees, and less than or equal to 90 degrees. The camera shutter using the friction member is also provided. The camera shutter includes a brake mechanism and a drive mechanism including a blade driving lever having a moving path. The brake mechanism includes two abovementioned friction members and a brake lever clamped between the two friction members. The brake lever is located at a termination of the moving path to brake the blade driving lever.
Abstract:
A hydrophilic composite includes a carbon nanotube structure and a protein layer. The carbon nanotube structure has at least one carbon nanotube film. The protein layer covers one surface of the carbon nanotube structure, and is coupled to the at least one carbon nanotube film. The carbon nanotube structure is disposed on a substrate.