Abstract:
A method for manufacturing a flexible panel is disclosed, which has the following steps. First, a first substrate having a plurality of functional switches or conducting lines thereon is provided. Then, a second substrate is bonded on the functional switches or conducting lines, and the first substrate is thinned to a predetermined thickness subsequently. Afterwards, a flexible third substrate is adhered on the first substrate, wherein the first substrate is sandwiched between the second substrate and the third substrate. Finally, the second substrate is removed.
Abstract:
A digital programmable DC—DC voltage-down converter which can be used in a low voltage and low power digital circuit design is disclosed. The DC—DC voltage-down converter includes at least a digitally controlled oscillator (DCO), a pulse-width modulator (PWM), a gate driver, and a switching-type voltage-down converter. Duty cycle and operating frequency of the modulated signal are controlled by using two digital control signals. Furthermore, combining the pulse-width modulator and the digitally controlled oscillator (DCO), the duty cycle of the generated clock is more robustly stable for different frequencies during process variation.
Abstract:
A multi-layered complementary conductive line structure, a manufacturing method thereof and a manufacturing method of a TFT (thin film transistor) display array are provided. The process of TFT having multi-layered complementary conductive line structures does not need to increase the mask number in comparison with the currently process and is able to solve the resistance problem of the lines inside a display.
Abstract:
A method for fabricating a semiconductor device includes providing a substrate, forming an amorphous silicon layer over the substrate, forming a heat retaining layer on the amorphous silicon layer, patterning the heat retaining layer, and irradiating the patterned heat retaining layer.
Abstract:
A heat sink layer is formed on portions of a substrate, and then an amorphous silicon layer is formed thereon. The heat coefficient of the sink layer is greater than that of the substrate. When an excimer laser heats the amorphous silicon layer to crystallize the amorphous silicon, nucleation sites are formed in the amorphous silicon layer on the heat sink layer. Next, laterally expanding crystallization occurs in the amorphous silicon layer on the substrate to form polysilicon having a crystal size of a micrometer.
Abstract:
A memory cell suitable for being disposed over a substrate is provided. The memory cell includes a poly-silicon island, a first dielectric layer, a trapping layer, a second dielectric layer and a control gate. The poly-silicon island is disposed on the substrate and includes a source region, a drain region and a channel region located between the source and drain regions. The channel region has a plurality of regularly arranged tips thereon. The first dielectric layer is disposed on the poly-silicon island. The trapping layer is disposed on the first dielectric layer. The second dielectric layer is disposed on the trapping layer. The control gate is disposed on the second dielectric layer. The memory cell mentioned above can be integrated into the LTPS-LCD panel or OLED panel.
Abstract:
A memory cell suitable for being disposed over a substrate is provided. The memory cell includes a poly-silicon island, a first dielectric layer, a trapping layer, a second dielectric layer and a control gate. The poly-silicon island is disposed on the substrate and includes a source region, a drain region and a channel region located between the source and drain regions. The channel region has a plurality of regularly arranged tips thereon. The first dielectric layer is disposed on the poly-silicon island. The trapping layer is disposed on the first dielectric layer. The second dielectric layer is disposed on the trapping layer. The control gate is disposed on the second dielectric layer. The memory cell mentioned above can be integrated into the LTPS-LCD panel or OLED panel.
Abstract:
A method for forming a polysilicon film in a plasma-assisted chemical vapor deposition (CVD) system including a chamber in which a first electrode and a second electrode spaced apart from the first electrode are provided comprises providing a substrate on the second electrode, the substrate including a surface exposed to the first electrode, applying a first power to the first electrode for generating a plasma in the chamber, applying a second power to the second electrode during a nucleation stage of the polysilicon film for ion bombarding the surface of the substrate, and flowing an erosive gas into the chamber.
Abstract:
A memory cell, suitable for being disposed on a substrate, comprises a poly-Si island, a first dielectric layer, a trapping layer, a second dielectric layer and a control gate. The poly-Si island is disposed on the substrate and includes a source doped region, a drain doped region and a channel region there-between. The first dielectric layer is disposed on the poly-Si island, the trapping layer is disposed on the first dielectric layer, the second dielectric layer is disposed on the trapping layer and the control gate is disposed on the second dielectric layer. The above-described memory cell can be integrated into the manufacturing process of a low temperature polysilicon LCD panel (LTPS LCD panel) or an organic light emitting display panel (OLED panel).
Abstract:
A multi-layered wire structure includes a substrate, a plurality of first conductive lines formed in a first layer over the substrate extending in parallel to each other in a first direction, a plurality of second conductive lines formed in a second layer over the first layer extending in parallel to each other in a second direction orthogonal to the first direction, a plurality of sets of third conductive lines formed in the second layer extending in the first direction, each set of third conductive lines corresponding to one of the first conductive lines, and a plurality of sets of conductive paths formed between the first layer and the second layer, each set of conductive paths corresponding to one of the first conductive lines and one set of third conductive lines and electrically connecting the corresponding first conductive line to the corresponding set of third conductive lines.