Abstract:
The present technology concerns cell phones and other portable devices, and more particularly concerns use of such devices in connection with media content (electronic and physical) and with other systems (e.g., televisions, digital video recorders, and electronic program directories). Some aspects of the technology allow users to easily transfer displayed content from cell phone screens onto a television screens for easier viewing, or vice versa for content portability. Others enable users to participate interactively in entertainment content, such as by submitting plot directions, audio input, character names, etc., yielding more engaging, immersive, user experiences. Still other aspects of the technology involve a program directory database, compiled automatically from information reported by network nodes that watch and identify content traffic passing into (and/or out of) networked computers. By identifying content resident at a number of different repositories (e.g., web sites, TV networks, P2P systems, etc.), such a directory allows cell phone users to identify the diversity of sources from which desired content can be obtained—some available on a scheduled basis, others available on demand. Depending on the application, the directory information may be transparent to the user—serving to identify sources for desired content, from which application software can pick for content downloading, based, e.g., on context and stored profile data. A great number of other features and arrangements are also detailed.
Abstract:
In some arrangements, product packaging is digitally watermarked over most of its extent to facilitate high-throughput item identification at retail checkouts. Imagery captured by conventional or plenoptic cameras can be processed (e.g., by GPUs) to derive several different perspective-transformed views—further minimizing the need to manually reposition items for identification. Crinkles and other deformations in product packaging can be optically sensed, allowing such surfaces to be virtually flattened to aid identification. Piles of items can be 3D-modelled and virtually segmented into geometric primitives to aid identification, and to discover locations of obscured items. Other data (e.g., including data from sensors in aisles, shelves and carts, and gaze tracking for clues about visual saliency) can be used in assessing identification hypotheses about an item. Logos may be identified and used—or ignored—in product identification. A great variety of other features and arrangements are also detailed.
Abstract:
Reference imagery of dermatological conditions is compiled in a crowd-sourced database (contributed by clinicians and/or the lay public), together with associated diagnosis information. A user later submits a query image to the system (e.g., captured with a smartphone). Image-based derivatives for the query image are determined (e.g., color histograms, FFT-based metrics, etc.), and are compared against similar derivatives computed from the reference imagery. This comparison identifies diseases that are not consistent with the query image, and such information is reported to the user. Depending on the size of the database, and the specificity of the data, 90% or more of candidate conditions may be effectively ruled-out, possibly sparing the user from expensive and painful biopsy procedures, and granting some peace of mind (e.g., knowledge that an emerging pattern of small lesions on a forearm is probably not caused by shingles, bedbugs, malaria or AIDS). A great number of other features and arrangements are also detailed.
Abstract:
Both fingerprinting and watermark decoding processes are applied to received items of audio-visual content. Further processing is applied as well. This further processing depends on output data from the watermark decoding process, and can cause two items of seemingly-identical audio-visual content to be further-processed in different ways.
Abstract:
In one particular arrangement, a smartphone camera is moved by a user to capture dermatologic imagery from a variety of viewpoints. When the user thereafter holds the phone in a particular pose (e.g., with the display inclined upwardly, and with a display edge oriented substantially horizontally), the device switches to a display mode—presenting information derived from the earlier-captured dermatologic imagery. The device thus switches automatically between data collection and data presentation modes, based on pose and motion. A great variety of other features and arrangements are also detailed.
Abstract:
Methods and arrangements involving portable devices, such as smartphones and tablet computers, are disclosed. One arrangement enables a creator of content to select software with which that creator's content should be rendered—assuring continuity between artistic intention and delivery. Another arrangement utilizes the camera of a smartphone to identify nearby subjects, and take actions based thereon. Others rely on near field chip (RFID) identification of objects, or on identification of audio streams (e.g., music, voice). Some of the detailed technologies concern improvements to the user interfaces associated with such devices. Others involve use of these devices in connection with shopping, text entry, sign language interpretation, and vision-based discovery. Still other improvements are architectural in nature, e.g., relating to evidence-based state machines, and blackboard systems. Yet other technologies concern use of linked data in portable devices—some of which exploit GPU capabilities. Still other technologies concern computational photography. A great variety of other features and arrangements are also detailed.
Abstract:
The disclosure relates, e.g., to media processing methods and arrangements. One method includes: obtaining first optical data in a first user's cell phone, the first optical data corresponding to a first face of a product's packaging, the product also including a second face of the packaging, the first face comprises first digital watermarking conveying first data and the second face comprises second digital watermarking convey second data; analyzing the first optical data to obtain the first data therefrom; responsive to providing the first data to a remotely located computer resource, the first user's cell phone receiving a first response; obtaining second optical data in a first user's cell phone, the second optical data corresponding the second face of the packaging; analyzing the second optical data to obtain the second data therefrom; responsive to providing the second data to a remotely located computer resource, the first user's cell phone receiving a second response, the second response being different from the first service; and storing in the cell phone an association between: i) the first data and the first response, and ii) the second data and the second response. Of course other methods, combinations and systems are disclosed as well.
Abstract:
The evolution of a skin condition over time can be useful in its assessment. In an illustrative arrangement, a user captures skin images at different times, using a smartphone. The images are co-registered, color-corrected, and presented to the user (or a clinician) for review, e.g., in a temporal sequence, or as one image presented as a ghosted overlay atop another. Image registration can employ nevi, hair follicles, wrinkles, pores, and pigmented regions as keypoints. With some imaging spectra, keypoints from below the outermost layer of skin can be used. Hair may be removed for image registration, and restored for image review. Transformations in addition to rotation and affine transforms can be employed. Diagnostic correlations with reference image sequences can be made, employing machine learning in some instances. A great variety of other features and arrangements are also detailed.
Abstract:
To make a payment, a smartphone presents artwork for a payment card (e.g., a Visa card) that has been selected by a user from a virtual wallet of such cards. Encoded in the displayed artwork is payment information that has been encrypted with a context-dependent session key. A cooperating system (e.g., a retailer's point of sale system) uses a camera to capture an image of the artwork, and independently creates the session key from its own context sensor(s), enabling decryption of the payment information. Such technology provides a superior transaction security model at a fraction of the cost of competing chip card payment systems (which require, e.g., expensive physical cards, and single-purpose reader hardware). A great variety of other features and arrangements are also detailed.
Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. The image processing tasks applied to the scene can be selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone can apply more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In some arrangements, data may be referred to the cloud for analysis, or for gleaning. Cognition, and identification of appropriate device response(s), can be aided by collateral information, such as context. A great number of other features and arrangements are also detailed.