摘要:
Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
摘要:
A method of forming at least one undercut structure in a semiconductor substrate. The method comprises providing a semiconductor substrate, forming at least one doped region in the semiconductor substrate, and removing the at least one doped region to form at least one undercut structure in the semiconductor substrate. The at least one undercut structure may include at least one substantially vertical shelf, at least one substantially horizontal shelf, and at least one faceted surface. The at least one doped region may be formed by implanting an impurity in the semiconductor substrate, which is, optionally, annealed. The at least one doped region may be removed selective to the undoped portion of the semiconductor substrate by at least one of wet etching or dry etching. An intermediate semiconductor structure that comprises a single crystalline silicon substrate and at least one undercut structure formed in the single crystalline silicon substrate is also disclosed.
摘要:
A memory cell, device, and system include a memory cell having a shared digitline, a storage capacitor, and a plurality of access transistors configured to selectively electrically couple the storage capacitor with the shared digitline. The digitline couples with adjacent memory cells and the plurality of access transistor selects which adjacent memory cell is coupled to the shared digitline. A method of forming the memory cell includes forming a buried digitline in the substrate and a vertical pillar in the substrate immediately adjacent to the buried digitline. A dual gate transistor is formed on the vertical pillar with a first end electrically coupled to the buried digitline and a second end coupled to a storage capacitor formed thereto.
摘要:
Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
摘要:
Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
摘要:
Variations in the pitch of features formed using pitch multiplication are minimized by separately forming at least two sets of spacers. Mandrels are formed and the positions of their sidewalls are measured. A first set of spacers is formed on the sideswalls. The critical dimension of the spacers is selected based upon the sidewall positions, so that the spacers are centered at desired positions. The mandrels are removed and the spacers are used as mandrels for a subsequent spacer formation. A second material is then deposited on the first set of spacers, with the critical dimensions of the second set of spacers chosen so that these spacers are also centered at their desired positions. The first set of spacers is removed and the second set is used as a mask for etching a substrate. By selecting the critical dimensions of spacers based partly on the measured position of mandrels, the pitch of the spacers can be finely controlled.
摘要:
A single crystal silicon etching method includes providing single crystal silicon substrate having at least one trench therein. The substrate is exposed to an anisotropic etchant which undercuts the silicon. By controlling the length of the etch, single crystal silicon islands or smooth vertical walls in the single crystal silicon may be created.
摘要:
A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The substrate is exposed to a buffered fluoride etch solution which undercuts the silicon to provide lateral shelves when patterned in the direction. The resulting structure includes an undercut feature when patterned in the direction.
摘要:
Aluminum-containing films having an oxygen content within the films. The aluminum-containing film is formed by introducing hydrogen gas along with argon gas into a sputter deposition vacuum chamber during the sputter deposition of aluminum or aluminum alloys onto a semiconductor substrate. The aluminum-containing film so formed is hillock-free and has low resistivity, relatively low roughness compared to pure aluminum, good mechanical strength, and low residual stress.
摘要:
A method of forming an extraction grid for field emitter tip structures is described. A conductive layer is deposited over an insulative layer formed over the field emitter tip structures. The conductive layer is milled using ion milling. Owing to topographical differences along an exposed surface of the conductive layer, ions strike the exposed surface at various angles of incidence. As etch rate from ion milling is dependent at least in part upon angle of incidence, a selectivity based on varying topography of the exposed surface (“topographic selectivity”) results in non-uniform removal of material thereof. In particular, portions of the conductive layer in near proximity to the field emitter tip structures are removed faster than portions of the conductive layer between emitter tip structures. Thus, portions of the insulative layer in near proximity to the field emitter tip structures may be exposed while leaving intervening portions of the conductive layer for forming the extraction grid. Accordingly, such formation of the extraction grid is self-aligned to its associated emitter tip structures.