Abstract:
A seat assembly (10) for use in a watercraft (12) having a deck (14). The seat assembly (10) comprises a first portion (16) and a second portion (18) spaced from the first portion (16). First (52) and second (54) connector panels that are separable from and independent of the first (16) and second (18) portions interconnect the first (16) and second (18) portions. A plurality of locking tabs (56) extend from each of the connector panels (52,54) and are inserted into a plurality of slots (58) defined in the portions (16,18) to connect the connector panels (52,54) to the first (16) and second (18) portions. A mounting bracket (84) is attached to a base (82) of each of the connector panels (52,54) and perpendicularly extends from the connector panels (52,54) to mount the connector panels (52,54) to the deck (14) thereby securing the first (16) and second (18) portions to the deck (14).
Abstract:
An information handling system is returned to its original manufacture state with a tool stored on a detachable memory device that retrieves image restore information from non-volatile memory of the information handling system, cleanses information stored on the non-volatile memory and then returns the image restore information to the non-volatile memory. By executing an image restore tool that applies the image restore information, the original manufacture image is re-built in the non-volatile memory after the cleansing so that any personal information stored on the non-volatile memory by a previous user is erased.
Abstract:
The present invention provides lipids that are advantageously used in lipid particles for the in vivo delivery of therapeutic agents to cells. In particular, the invention provides lipids having the following structure (I) wherein R1 and R2 are each independently for each occurrence optionally substituted C10-C30 alkyl, optionally substituted C10-C30 alkenyl, optionally substituted C10-C30 alkynyl, optionally substituted C10-C30 acyl, or -linker-ligand; R3 is H, optionally substituted C1-C10 alkyl, optionally substituted C2-C10 alkenyl, optionally substituted C2-C10 alkynyl, alkylhetrocycle, alkylphosphate, alkylphosphorothioate, alkylphosphorodithioate, alkylphosphonates, alkylamines, hydroxyalkyls, ω-aminoalkyls, ω-(substituted)aminoalkyls, ω-phosphoalkyls, ω-thiophosphoalkyls, optionally substituted polyethylene glycol (PEG, mw 100-40K), optionally substituted mPEG (mw 120-40K), heteroaryl, heterocycle, or linker-ligand; E is O, S, N(Q), C(O), N(Q)C(O), C(O)N(Q), (Q)N(CO)O, O(CO)N(Q), S(O), NS(O)2N(Q), S(O)2, N(Q)S(O)2, SS, O═N, aryl, heteroaryl, cyclic or heterocycle; and, Q is H, alkyl, ω-aminoalkyl, ω-(substituted)aminoalky, ω-phosphoalkyl or ω-thiophosphoalkyl.
Abstract:
A tracking device is disclosed for communication of location coordinate information. In one embodiment, the tracking device includes a signal transceiver device, a location coordinate acquisition device, and a computational processor activated and deactivated in accordance with a subscriber service usage profile. The location coordinate acquisition device generates a position fix of the tracking device and a signal transceiver device reports the position fix to a location tracking server. A flash memory device stores a zone management map. In accordance with a fix reporting period based at least in part on a subscriber service usage application including or accessing the subscriber service usage profile, an internal clock activates or deactivates the signal transceiver device, the computational processor, and/or the location coordinate acquisition device. In one example, the internal clock updates a fix reporting period based on current position fix relative to restricted and allowed areas on the zone management map.
Abstract:
A gas turbine engine including a segment of an annular guide vane assembly is provided. When the engine is used, the segment directs hot combustion gases onto rotor blades of the engine. The segment includes a platform disposed at a side of the segment radially inward/outward with respect to the axis of rotation of the engine. The platform has a trailing edge portion downstream with respect to the flow of hot combustion gases through the segment, the trailing edge portion includes a rail that extends radially inwardly/outwardly from the trailing edge portion. The engine also includes a support and cooling arrangement for supporting the segment and directing a cooling fluid to cool the segment. The arrangement is located radially inward/outward of the platform, and includes a flange part that extends radially outwardly/inwardly from the arrangement. The arrangement further includes a leaf seal and a retaining pin.
Abstract:
A device and method to monitor location coordinates of an electronic tracking device are disclosed here. The device includes transceiver circuitry to receive at least one portion of a receive communication signal comprising location coordinates information; accelerometer circuitry to measure displacements of the portable electronic tracking device; a battery power monitor configured to activate and deactivate at least one portion of signaling circuitry; and processor circuitry configured to process the displacements. The method includes receiving at least one portion of a receive communication signal comprising location coordinates information; measuring displacements of a portable electronic tracking device; activating and deactivating at least one portion of signaling circuitry; and processing the at least one portion of the receive communication signal.
Abstract:
A deflector for guiding a cooling fluid to a blade device of a turbine is provided. The deflector includes a first opening region with a first opening shape and a second opening region with a second opening shape. The deflector is connectable to a first blade device and to a second blade device in such a way that the cooling fluid is streamable through the first opening region into the first blade device and the cooling fluid is streamable through the second opening region into the second blade device. The first opening shape differs from the second opening shape for achieving a predetermined first mass flow of the cooling fluid into the first blade device and a predetermined second mass flow of the cooling fluid into the second blade device at predetermined installation locations of the first blade device and the second blade device.
Abstract:
A device and method to monitor location coordinates of an electronic tracking device are disclosed here. The device includes transceiver circuitry to receive at least one portion of a receive communication signal comprising location coordinates information; accelerometer circuitry to measure displacements of the portable electronic tracking device; a battery power monitor configured to selectively activate and deactivate at least one portion of the transceiver circuitry and location tracking circuitry; and processor circuitry configured to process the at least one portion of the receive communication signal. The method includes receiving at transceiver circuitry of a portable electronic tracking device at least one portion of a receive communication signal comprising location coordinates information; measuring displacements of the portable electronic tracking device; activating and deactivating at least one portion of the transceiver circuitry and location tracking circuitry; and processing the at least one portion of the receive communication signal using processor circuitry.
Abstract:
The invention features compounds of formula I or II: In one embodiment, the invention relates compounds and processes for conjugating ligand to oligonucleotide. The invention further relates to methods for treating various disorders and diseases such as viral infections, bacterial infections, parasitic infections, cancers, allergies, autoimmune diseases, immunodeficiencies and immunosuppression.