摘要:
Devices under test (DUTs) can be tested in a test system that includes an aligner and test cells. A DUT can be moved into and clamped in an aligned position on a carrier in the aligner. In the align position, electrically conductive terminals of the DUT can be in a predetermined position with respect to carrier alignment features of the carrier. The DUT/carrier combination can then be moved from the aligner into one of the test cells, where alignment features of the carrier are mechanically coupled with alignment features of a contactor in the test cell. The mechanical coupling automatically aligns terminals of the DUT with probes of the contactor. The probes thus contact and make electrical connections with the terminals of the DUT. The DUT is then tested. The aligner and each of the test cells can be separate and independent devices so that a DUT can be aligned in the aligner while other DUTs, having previously been aligned to a carrier in the aligner, are tested in a test cell.
摘要:
A stiffener structure, a wiring substrate, and a frame having a major surface disposed in a stack can be part of a probe card assembly. The wiring substrate can be disposed between the frame and the stiffener structure, and probe substrates can be coupled to the frame by one or more non-adjustably fixed coupling mechanisms. Each of the probe substrates can have probes that are electrically connected through the probe card assembly to an electrical interface on the wiring substrate to a test controller. The non-adjustably fixed coupling mechanisms can be simultaneously stiff in a first direction perpendicular to the major surface and flexible in a second direction generally parallel to the major surface.
摘要:
A stiffener assembly for use with testing devices is provided herein. In some embodiments, a stiffener for use with testing devices includes an inner member; an outer member disposed in a predominantly spaced apart relation to the inner member; and a plurality of alignment mechanisms for orienting the inner and outer members with respect to each other, wherein the alignment mechanisms transfer forces applied to a lower surface of the inner member to the outer member and provide the predominant conductive heat transfer passageway between the inner and outer members.
摘要:
Rotating contact elements and methods of fabrication are provided herein. In one embodiment, a rotating contact element includes a tip having a first side configured to contact a device to be tested and an opposing second side; and a plurality of deformed members extending from the second side of the tip and arranged about a central axis thereof, wherein the tip rotates substantially about the central axis upon compression of the plurality of deformed members.
摘要:
A stiffener structure, a wiring substrate, and a frame having a major surface disposed in a stack can be part of a probe card assembly. The wiring substrate can be disposed between the frame and the stiffener structure, and probe substrates can be coupled to the frame by one or more non-adjustably fixed coupling mechanisms. Each of the probe substrates can have probes that are electrically connected through the probe card assembly to an electrical interface on the wiring substrate to a test controller. The non-adjustably fixed coupling mechanisms can be simultaneously stiff in a first direction perpendicular to the major surface and flexible in a second direction generally parallel to the major surface.
摘要:
A thermal adjustment apparatus for adjusting one or more thermally induced movements of an electro-mechanical assembly includes: a compensating element expanding at a first rate different from a second rate at which the electro-mechanical assembly expands for generating a counteracting force in response to changes in temperature; and a coupling mechanism coupling the compensating element to the electro-mechanical assembly, and being adjustable to control an amount of the counteracting force applied to the electro-mechanical assembly as temperature changes.
摘要:
A stiffener assembly for use with testing devices is provided herein. In some embodiments, a stiffener for use with testing devices includes an inner member; an outer member disposed in a predominantly spaced apart relation to the inner member; and a plurality of alignment mechanisms for orienting the inner and outer members with respect to each other, wherein the alignment mechanisms transfer forces applied to a lower surface of the inner member to the outer member and provide the predominant conductive heat transfer passageway between the inner and outer members.
摘要:
A stiffener assembly for use with testing devices is provided herein. In some embodiments, a stiffener for use with testing devices includes an inner member; an outer member disposed in a predominantly spaced apart relation to the inner member; and a plurality of alignment mechanisms for orienting the inner and outer members with respect to each other, wherein the alignment mechanisms transfer forces applied to a lower surface of the inner member to the outer member and provide the predominant conductive heat transfer passageway between the inner and outer members.
摘要:
Methods and apparatus for testing semiconductor devices are provided herein. In some embodiments, an assembly for testing semiconductor devices can include a probe card assembly; and a thermal barrier disposed proximate an upper surface of the probe card assembly, the thermal barrier can restrict thermal transfer between tester side boundary conditions and portions of the probe card assembly disposed beneath the thermal barrier.
摘要:
An electronic device can comprise a semiconductor die on which can be formed a micromechanical system. The micromechanical system can comprise a plurality of electrically conductive elongate, contact structures, which can be disposed on input and/or output terminals of the semiconductor die. The micromechanical system can also comprise a cooling structure disposed on the semiconductor die.