Abstract:
A method of laser brazing a metal workpiece assembly along a joint seam established between a first metal workpiece and a second metal workpiece involves advancing a laser beam along the joint seam while feeding a filler wire into the laser beam to melt a leading end of the filler wire, which is impinged by the laser beam, to produce and dispense molten filler material within and along the joint seam. The dispensed molten filler material solidifies behind the laser beam into a braze joint. Additionally, as part of the method, a position of a focal point of the laser beam relative to the leading end of the filler wire is repeatedly fluctuated during advancement of the laser beam along at least part of the joint seam.
Abstract:
A method of resistance spot welding a workpiece stack-up comprising overlapping first and second steel workpieces is disclosed, wherein at least one of the steel workpieces comprises an advanced high-strength steel substrate. The workpiece stack-up is positioned between a pair of opposed first and second welding electrodes. A cover is disposed between at least one of the first steel workpiece and the first welding electrode or the second steel workpiece and the second welding electrode at an intended weld site. The workpiece stack-up is clamped between the first and second welding electrodes at the weld site such that at least one of the weld faces of the first and second welding electrodes presses against the cover. The first and second steel workpieces are welded together by passing an electrical current between the first and second welding electrodes at the weld site.
Abstract:
A joint member (100) includes a metal component (12) and a composite component (14) which are joined by a joint (10) formed at a non-planar joint interface (18) defined by a textured surface portion (28) of the metal component (12) and a solidified melted area (24) of the composite component (14). The solidified melted area (24) adjacent to the joint interface (18) is characterized by a plurality of non-contiguous solidification boundaries (22) and a non-contiguous dispersion of porosity (16). A method includes forming a textured surface portion (28) on the metal component (12), pressing the textured surface portion (28) into the surface of the composite component (14) to form depressions (32) in the composite component (14), such that a joint interface (18) is defined by the surfaces of the textured surface portion (28) and the composite depressions (32), heating the joint interface (18) to melt an area of the composite component (14) adjacent to the joint interface (18), and solidifying the melted area (24) to the form a joint (10) at the joint interface (18).
Abstract:
A method of laser welding a workpiece stack-up that includes two or more overlapping metal workpieces is disclosed. The disclosed method includes directing a laser beam at a top surface of the workpiece stack-up to create a molten metal weld pool and, optionally, a keyhole, and further gyrating the laser beam to move a focal point of the laser beam along a helical path having a central helix axis oriented transverse to the top and bottom surfaces of the workpiece stack-up. The gyration of the laser beam may even be practiced to move the focal point of the laser beam along a plurality of helical paths so as to alternately convey the focal point back-and-forth in a first overall axial direction and a second overall axial direction while advancing the laser beam relative to the top surface of the workpiece stack-up along a beam travel pattern.
Abstract:
A method of laser welding a workpiece stack-up that includes at least two overlapping metal workpieces is disclosed. The method includes advancing a beam spot of a laser beam relative to a top surface of the workpiece stack-up and along a beam travel pattern to form a laser weld joint, which is comprised of resolodified composite metal workpiece material, that fusion welds the metal workpieces together. And, while the beam spot is being advanced along the beam travel pattern, between a first point and a second point, which may or may not encompass the entire beam travel pattern, at least one of the following laser beam parameters is repeatedly varied: (1) the power level of the laser beam; (2) the travel speed of the laser beam; or (3) the focal position of the laser beam relative to the top surface of the workpiece stack-up.
Abstract:
A workpiece stack-up that includes at least a steel workpiece and an aluminum-based workpiece can be resistance spot welded by a spot welding method in which the welding current is controlled to perform one or more stages of weld joint development. When it is desired to terminate weld current flow and to solidify a liquid weld pool into a weld nugget (of mostly aluminum-based composition), additional cooling is applied to the outer surface of the aluminum-based workpiece around the contact area of the spot welding electrode engaging the surface of the aluminum-based workpiece surface. The additional cooling is applied and controlled so as to increase the rate of solidification of the liquid aluminum-based material and to control the direction of solidification of the weld nugget to better confine impurities, and the like, originally in the melt, at the surface of the steel workpiece.
Abstract:
A system and method for stabilizing the molten pool in a laser welding operation by suppressing a laser-induced plume which occurs when zinc coated steels are laser welded. The plume is a result of vaporization of zinc, and the zinc vapor in the plume disturbs the molten pool and causes blowholes, spattering and porosity. The stabilization is achieved by applying a gas such as air through a nozzle to the weld area, where the gas has sufficient velocity and flow rate to blow the zinc vapor away from the molten pool. Dramatically improved weld quality results have been demonstrated. Configuration parameters which yield optimum results—including gas flow rate and velocity, and nozzle position and orientation relative to the laser impingement location on the steel—are disclosed.
Abstract:
A method of laser spot welding a workpiece stack-up that includes at least two overlapping steel workpieces, at least one of which includes a surface coating, is disclosed. The method includes directing a laser beam at the top surface of the workpiece stack-up to create a molten steel weld pool that penetrates into the stack-up. The molten steel weld pool is then grown to penetrate further into the stack-up by increasing an irradiance of the laser beam while reducing the projected sectional area of the laser beam at a plane of the top surface of the workpiece stack-up. Increasing the irradiance of the laser beam may be accomplished by moving a focal point of the laser beam closer to the top surface or by reducing an angle of incidence of the laser beam so as to reduce the eccentricity of the projected sectional area of the laser beam.
Abstract:
A method of laser welding a workpiece stack-up (10) of overlapping steel workpieces (12, 14) involves heat-treating a region (64) of the stack-up (10) followed by forming a laser weld joint (66) that is located at least partially within the heat-treated region (64). During heat-treating, one or more pre-welding laser beams (68) are sequentially directed at a top surface (20) of the workpiece stack-up (10) and advanced along a pre-welding beam travel pattern (70) so as to reduce an amount of vaporizable zinc within the stack-up (10). Thereafter, the laser weld joint (66) is formed by directing a welding laser beam (82) at the top surface (20) of the workpiece stack-up (10) and advancing the welding laser beam (82) along a welding beam travel pattern (84) that at least partially overlaps with a coverage area of a pre-welding beam travel pattern (70) or a shared coverage area portion of multiple pre-welding beam travel patterns (70). The method can help reduce an amount of vaporizable zinc within the stack-up (10).
Abstract:
A method of laser spot welding a workpiece stack-up (10) includes initially forming at least one hole (74) in the workpiece stack-up and, thereafter, forming a laser spot weld joint (86). The formation of the laser spot weld joint involves directing a welding laser beam (24) at the top surface (20) of the workpiece stack-up to create a molten steel weld pool (98) that penetrates into the stack-up, and then advancing the welding laser beam relative to a plane of the top surface of the workpiece stack-up along a beam travel pattern (102) that lies within an annular weld area (90). The beam travel pattern of the welding laser beam surrounds a center area (96) on the plane of the top surface that spans the at least one hole formed in the workpiece stack-up. The workpiece stack-up includes at least two overlapping steel workpieces, at least one of which includes a surface coating of a zinc-based material. This method can minimize porosity within the weld joint.