Abstract:
A method of fabricating a gate with a mini field plate includes forming a dielectric passivation layer over an epitaxy layer on a substrate, coating the dielectric passivation layer with a first resist layer, etching the first resist layer and the dielectric passivation layer to form a first opening in the dielectric passivation layer, removing the first resist layer, and forming a tri-layer gate having a gate foot in the first opening, a gate neck extending from the gate foot, and a gate head extending from the gate neck. The gate foot has a first width, and the gate neck has a second width that is wider than the first width. The gate neck extends for a length over the dielectric passivation layer on both sides of the first opening. The gate head has a third width wider than the second width of the gate neck.
Abstract:
A vertical directional coupler or switch comprising a lower and an upper waveguide, integrated with an optical phase change material disposed between the lower and upper waveguides to control a directional of optical coupling between the lower and upper waveguides.
Abstract:
A four-terminal GaN transistor and methods of manufacture, the transistor having source and drain regions and preferably two T-shaped gate electrodes, wherein a stem of one of the two T-shaped gate electrodes is more closely located to the source region than it is to a stem of the other one of the two T-shaped gate electrodes and wherein the stem of the other one of the two T-shaped gate electrodes is more closely located to the drain region than it is to the stem of said one of the two T-shaped gate electrodes. The the gate closer to the source region is a T-gate, and the proximity of the two gates is less than 500 nm from each other. The spacing between the stem of the RF gate and source region and the stem of the DC gate and drain region are preferably defined by self-aligned fabrication techniques. The four-terminal GaN transistor is capable of operation in the W-band (75 to 100 GHz).
Abstract:
A transistor includes a substrate, a channel layer coupled to the substrate, a source electrode coupled to the channel layer, a drain electrode coupled to the channel layer, and a gate electrode coupled to the channel layer between the source electrode and the drain electrode. The gate electrode has a length dimension of less than 50 nanometers near the channel layer, and the channel layer includes at least a first GaN layer and a first graded AlGaN layer on the first GaN layer.
Abstract:
A reconfigurable electro-magnetic tile includes a laser layer including a plurality of lasers, and a pixelated surface comprising a plurality of metal patches and a plurality of switches, wherein each respective switch of the plurality of switches is in a gap between a first respective metal patch and a second respective metal patch, wherein each respective switch is optically coupled to at least one respective laser of the plurality of lasers, and wherein each switch of the plurality of switches comprises a phase change material.
Abstract:
A neuroelectric sensor and stimulator system includes a first antenna, a reader coupled to the first antenna for transmitting stimulation controls and power to a second antenna, and for receiving sensor data transmitted from the second antenna via the first antenna, and at least one neuroelectric sensor stimulator array including the second antenna, a rectifier coupled to the second antenna for extracting power transmitted from the first antenna, a controller coupled to the second antenna for decoding controls transmitted from the first antenna to the second antenna for the neuroelectric sensor stimulator array, a plurality of sensors, a multiplexer coupled to the controller and to the plurality of sensors for selecting a single sensor, and a plurality of stimulators coupled to the controller for stimulating neurons, wherein the rectifier, the controller, the plurality of sensors, the multiplexer, and the plurality of stimulators include graphene.
Abstract:
A device including a biopolymer membrane, a passivation layer on the biopolymer membrane, a graphene layer on the passivation layer, a source electrode on the graphene layer, and a drain electrode on the graphene layer, wherein the graphene layer extends between the source electrode and the drain electrode.
Abstract:
An apparatus, system, and/or method are described to enable optically transparent reconfigurable integrated electrical components, such as antennas and RF circuits to be integrated into an optically transparent host platform, such as glass. In one embodiment, an Ag NW film may be configured as a transparent conductor for antennas and/or as interconnects for passive circuit components, such as capacitors or resistors. Ag NW may also be used as transmission lines and/or interconnect overlays for devices. A graphene film may also be configured as active channel material for making active RF devices, such as amplifiers and switches.
Abstract translation:描述了一种装置,系统和/或方法,以实现光学透明的可重新配置的集成电组件,例如要集成到诸如玻璃的光学透明主机平台中的天线和RF电路。 在一个实施例中,Ag NW膜可以被配置为用于天线的透明导体和/或用作无源电路部件(例如电容器或电阻器)的互连。 Ag NW也可以用作设备的传输线和/或互连覆盖。 石墨烯膜还可以被配置为用于制造有源RF器件(例如放大器和开关)的有源沟道材料。