摘要:
Provided is a semiconductor device having a cooling path on its bottom surface. The stack-type semiconductor device having a cooling path comprises a stack-type semiconductor chip comprising a first semiconductor chip and a second semiconductor chip. The first semiconductor chip comprises a first surface in which a circuit unit is formed and a second surface in which a first cooling path is formed, and the second semiconductor chip comprises a first surface in which a circuit unit is formed and a second surface in which a second cooling path is formed. The second surface of the first semiconductor chip and the second surface of the second semiconductor chip are bonded to each other, and a third cooling path is formed in the middle of the stack-type semiconductor chip using the first and second cooling paths. Warpage of the stack-type semiconductor device is suppressed and heat is easily dissipated.
摘要:
In a semiconductor device package having a stress relief spacer, and a manufacturing method thereof, metal interconnect fingers extend from the body of a chip provide for chip interconnection. The metal fingers are isolated from the body of the chip by a stress-relief spacer. In one example, such isolation takes the form of an air gap. In another example, such isolation takes the form of an elastomer material. In either case, mismatch in coefficient of thermal expansion between the metal interconnect fingers and the body of the chip is avoided, alleviating the problems associated with cracking and delamination, and leading to improved device yield and device reliability.
摘要:
A method of manufacturing a semiconductor device includes forming an integrated circuit region on a semiconductor wafer. A first metal layer pattern is formed over the integrated circuit region. A via hole is formed to extend through the first metal layer pattern and the integrated circuit region. A final metal layer pattern is formed over the first metal layer pattern and within the via hole. A plug is formed within the via hole. Thereafter, a passivation layer is formed to overlie the final metal layer pattern.
摘要:
In a semiconductor device package having a stress relief spacer, and a manufacturing method thereof, metal interconnect fingers extend from the body of a chip provide for chip interconnection. The metal fingers are isolated from the body of the chip by a stress-relief spacer. In one example, such isolation takes the form of an air gap. In another example, such isolation takes the form of an elastomer material. In either case, mismatch in coefficient of thermal expansion between the metal interconnect fingers and the body of the chip is avoided, alleviating the problems associated with cracking and delamination, and leading to improved device yield and device reliability.
摘要:
In a semiconductor device package having a stress relief spacer, and a manufacturing method thereof, metal interconnect fingers extend from the body of a chip provide for chip interconnection. The metal fingers are isolated from the body of the chip by a stress-relief spacer. In one example, such isolation takes the form of an air gap. In another example, such isolation takes the form of an elastomer material. In either case, mismatch in coefficient of thermal expansion between the metal interconnect fingers and the body of the chip is avoided, alleviating the problems associated with cracking and delamination, and leading to improved device yield and device reliability.
摘要:
A semiconductor module can include a printed circuit board (PCB) and a semiconductor package inserted into an inner space of the PCB. The semiconductor package may be electrically connected to the PCB. The PCB may thus surround the semiconductor package so that cracks may not be generated in the outer terminals.
摘要:
In a semiconductor device package having a stress relief spacer, and a manufacturing method thereof, metal interconnect fingers extend from the body of a chip provide for chip interconnection. The metal fingers are isolated from the body of the chip by a stress-relief spacer. In one example, such isolation takes the form of an air gap. In another example, such isolation takes the form of an elastomer material. In either case, mismatch in coefficient of thermal expansion between the metal interconnect fingers and the body of the chip is avoided, alleviating the problems associated with cracking and delamination, and leading to improved device yield and device reliability.
摘要:
Provided are methods of fabricating semiconductor chips, semiconductor chips formed by the methods, and chip-stack packages having the semiconductor chips. One embodiment specifies a method that includes patterning a scribe line region of a semiconductor substrate to form a semiconductor strut spaced apart from edges of a chip region of the semiconductor substrate.
摘要:
A method of manufacturing a semiconductor device includes forming an integrated circuit region on a semiconductor wafer. A first metal layer pattern is formed over the integrated circuit region. A via hole is formed to extend through the first metal layer pattern and the integrated circuit region. A final metal layer pattern is formed over the first metal layer pattern and within the via hole. A plug is formed within the via hole. Thereafter, a passivation layer is formed to overlie the final metal layer pattern.
摘要:
In a semiconductor device package having a stress relief spacer, and a manufacturing method thereof, metal interconnect fingers extend from the body of a chip provide for chip interconnection. The metal fingers are isolated from the body of the chip by a stress-relief spacer. In one example, such isolation takes the form of an air gap. In another example, such isolation takes the form of an elastomer material. In either case, mismatch in coefficient of thermal expansion between the metal interconnect fingers and the body of the chip is avoided, alleviating the problems associated with cracking and delamination, and leading to improved device yield and device reliability.