Abstract:
Embodiments include apparatuses, methods, and systems for voltage level shifting a data signal between a low voltage domain and a high voltage domain. In embodiments, a voltage level shifter circuit may include adaptive keeper circuitry, enhanced interruptible supply circuitry, and/or capacitive boosting circuitry to reduce a minimum voltage of the low voltage domain that is supported by the voltage level shifter circuit. Other embodiments may be described and claimed.
Abstract:
Methods and systems to provide a multi-Vcc environment, such as to selectively boost an operating voltage of a logic block and/or provide a level-shifted control to the logic block. A multi-Vcc environment may be implemented to isolate a Vmin-limiting logic block from a single-Vcc environment, such as to reduce Vmin and/or improve energy efficiency in the single-Vcc environment. The logic block may include bit cells of a register file, a low-level processor cache, and/or other memory system. A cell Vcc may be boosted during a read mode and/or write wordlines (WWLs) and/or read wordlines (RWLs) may be asserted with boost. A wordline decoder may include a voltage level shifter with differential split-level logic, and a dynamic NAND, which may include NAND logic, a keeper circuit, and logic to delay a keeper control based on a delay of the level shifter to reduce contention during an initial NAND evaluation phase.
Abstract:
Described is an apparatus which comprises: a first power supply node to provide a first power supply; a second power supply node to provide a second power supply; a driver to operate on the first power supply, the driver to generate an output; and a receiver to operate on the second power supply, the receiver to receive the output from the driver and to generate a level-shifted output such that the receiver is operable to steer current from the second power supply to the first power supply.
Abstract:
Embodiments include a resistor, coupled on a signal path, that includes one or more resistive memory elements, such as one or more magnetic tunnel junctions (Mils). The resistance of the resistive memory elements may be digitally trimmable to adjust a resistance of the resistor on the signal path. The resistor may be incorporated into an analog or mixed signal circuit to pass an analog signal on the signal path. Other embodiments may be described and claimed.
Abstract:
Embodiments include apparatuses, methods, and systems for voltage level shifting a data signal between a low voltage domain and a high voltage domain. In embodiments, a voltage level shifter circuit may include adaptive keeper circuitry, enhanced interruptible supply circuitry, and/or capacitive boosting circuitry to reduce a minimum voltage of the low voltage domain that is supported by the voltage level shifter circuit. Other embodiments may be described and claimed.
Abstract:
Described is an apparatus for self-induced reduction in write minimum supply voltage for a memory element. The apparatus comprises: a memory element having cross-coupled inverters coupled to a first supply node; a power device coupled to the first supply node and a second supply node, the second supply node coupled to power supply; and an access device having a gate terminal coupled to a word-line, a first terminal coupled to the memory element, and a second terminal coupled to a bit-line which is operable to be pre-discharged to a logical low level prior to write operation.