Abstract:
Detection logic of a memory subsystem obtains a threshold for a memory device that indicates a number of accesses within a time window that causes risk of data corruption on a physically adjacent row. The detection logic obtains the threshold from a register that stores configuration information for the memory device, and can be a register on the memory device itself and/or can be an entry of a configuration storage device of a memory module to which the memory device belongs. The detection logic determines whether a number of accesses to a row of the memory device exceeds the threshold. In response to detecting the number of accesses exceeds the threshold, the detection logic can generate a trigger to cause the memory device to perform a refresh targeted to a physically adjacent victim row.
Abstract:
Embodiments are generally directed to performance of additional refresh operations during self-refresh mode. An embodiment of a memory device includes one or more memory banks, a mode register set, the mode register set including a first set of mode register bits, and a control logic to provide control operations for the memory device, the operations including refresh operations for the one or more memory banks in a refresh credit mode. The control logic is to perform one or more extra refresh cycles in response to receipt of a self-refresh command, the self-refresh command to provide current refresh status information, and is to store information in the first set of mode register bits regarding a modified refresh status after the performance of the one or more extra refresh cycles.
Abstract:
Techniques and mechanisms to provide write access to a memory device. In an embodiment, a memory controller sends commands to a memory device which comprises multiple memory banks. The memory controller further sends a signal specifying that the commands include back-to-back write commands each to access the same memory bank. In response to the signal, the memory device buffers first data of a first write command, wherein the first data is buffered at least until the memory device receives second data of a second write command. Error correction information is calculated for a combination of the first data and second data, and the combination is written to the memory bank. In another embodiment, buffering of the first data and combining of the first data with the second data is performed, based on the signal from the memory controller, in lieu of read-modify-write processing of the first data.
Abstract:
Devices, systems, and methods include an active mode to accommodate read/write operations of a memory device and a self-refresh mode to accommodate recharging of voltage levels representing stored data when read/write operations are idle. At least one register source provides a first voltage level and a second voltage level that is less than the first voltage level. With such a configuration, during the active mode, the memory device operates at the first voltage level as provided by the at least one register source, and during the self-refresh mode, the memory device operates at the second voltage level as provided by the at least one register source.
Abstract:
A memory subsystem enables a refresh abort command. A memory controller can issue an abort for an in-process refresh command sent to a memory device. The refresh abort enables the memory controller to more precisely control the timing of operations executed by memory devices in the case where a refresh command causes refresh of multiple rows of memory. The memory controller can issue a refresh command during active operation of the memory device, which is active operation refresh as opposed to self-refresh when the memory device controls refreshing. The memory controller can then issue a refresh abort during the refresh, and prior to completion of the refresh. The memory controller thus has deterministic control over both the start of refresh as well as when the memory device can be made available for access.
Abstract:
Techniques and mechanisms to provide write access to a memory device. In an embodiment, a memory controller sends commands to a memory device which comprises multiple memory banks. The memory controller further sends a signal specifying that the commands include back-to-back write commands each to access the same memory bank. In response to the signal, the memory device buffers first data of a first write command, wherein the first data is buffered at least until the memory device receives second data of a second write command. Error correction information is calculated for a combination of the first data and second data, and the combination is written to the memory bank. In another embodiment, buffering of the first data and combining of the first data with the second data is performed, based on the signal from the memory controller, in lieu of read-modify-write processing of the first data.
Abstract:
Embodiments are generally directed to performance of additional refresh operations during self-refresh mode. An embodiment of a memory device includes one or more memory banks, a mode register set, the mode register set including a first set of mode register bits, and a control logic to provide control operations for the memory device, the operations including refresh operations for the one or more memory banks in a refresh credit mode. The control logic is to perform one or more extra refresh cycles in response to receipt of a self-refresh command, the self-refresh command to provide current refresh status information, and is to store information in the first set of mode register bits regarding a modified refresh status after the performance of the one or more extra refresh cycles.
Abstract:
Devices, systems, and methods include an active mode to accommodate read/write operations of a memory device and a self-refresh mode to accommodate recharging of voltage levels representing stored data when read/write operations are idle. At least one register source provides a first voltage level and a second voltage level that is less than the first voltage level. With such a configuration, during the active mode, the memory device operates at the first voltage level as provided by the at least one register source, and during the self-refresh mode, the memory device operates at the second voltage level as provided by the at least one register source.
Abstract:
Error correction in a memory subsystem includes a memory device generating internal check bits after performing internal error detection and correction, and providing the internal check bits to the memory controller. The memory device performs internal error detection to detect errors in read data in response to a read request from the memory controller. The memory device selectively performs internal error correction if an error is detected in the read data. The memory device generates check bits indicating an error vector for the read data after performing internal error detection and correction, and provides the check bits with the read data to the memory controller in response to the read request. The memory controller can apply the check bits for error correction external to the memory device.
Abstract:
Techniques and mechanisms to facilitate an operational mode of a memory device to prepare for a targeted refresh of a row in memory. In an embodiment, the memory device performs one or more operations while in the mode to prepare for a future command from a memory controller, the command to implement, at least in part, a targeted refresh of a row in a first bank of the memory device. Prior to such a command, the memory device services another command from the memory controller. In another embodiment, servicing the other command includes the memory device accessing a second bank of the memory device while the memory device operates in the mode, and before completion of an expected future targeted row refresh.