Abstract:
Device, system, and method for display calibration. For example, an apparatus includes: one or more color sensors, embedded within a body of a mobile device, to measure one or more color attributes of a visual element displayed by a display unit of the mobile device when a lid of the mobile device is in a closed position; and a color calibrator to calibrate one or more parameters of the display unit based on the one or more color attributes measured by the one or more color sensors.
Abstract:
The present disclosure is directed to adaptive antenna selection. In general, devices consistent with the present disclosure may be configured to adapt their antenna configuration to sensed device conditions. In one embodiment, an example device may comprise a communication module, a plurality of antennas, at least one sensor and an antenna selection module. The communication module may be configured to send and receive information via at least wireless communication. The plurality of antennas may be configured to conduct the wireless communication, while the sensors may be configured to sense device conditions. The antenna selection module may be configured to cause at least one antenna in the plurality of antennas to be coupled to the communication module based on the device conditions.
Abstract:
In one example a input device for an electronic device comprises a first panel comprising an array of pressure sensors, a second panel comprising an array of apertures in fluid communication with the pressure sensors, and a controller comprising logic, at least partly including hardware logic, to receive a plurality of output signals from the plurality of pressure sensors, determine, from the plurality of output signals, a location of an input on the second panel, and generate a data point on a bitmap corresponding to the location of the input on the second panel. Other examples may be described.
Abstract:
Systems, apparatuses and methods may provide for a thermal protection apparatus comprising a substrate including surfaces defining one or more channels and an array of openings adjacent to the one or more channels and an outer layer coupled to the substrate. The outer layer may include a plurality of opaque elastic regions positioned adjacent to the array of openings. Additionally, a fluid may be positioned within the one or more channels. In one example, the plurality of opaque elastic regions are expandable to become protrusions including one or more of a rectangular shape, a donut shape or a dome shape.
Abstract:
One embodiment provides an apparatus. The apparatus includes a source conductive path to couple to a load conductive path and to a power source. The source conductive path is included in a garment and the load conductive path is related to a head mounted wearable device (HMWD).
Abstract:
Particular embodiments described herein provide for an electronic device, such as a notebook computer or laptop, that includes a circuit board coupled to a plurality of electronic components (which includes any type of components, elements, circuitry, etc.). One particular example implementation of the electronic device may include a keyboard portion that includes a plurality of keys; a display portion that includes a first display interconnect for operating the electronic device in a first configuration, and a second display interconnect for operating the electronic device in a second configuration; and a docking portion that includes a keyboard interconnect configured to be mated with at least one of the first display interconnect and the second display interconnect.
Abstract:
Methods and apparatus relating to a location aware power management scheme for an always-on-always-listen voice recognition system are described. In an embodiment, logic performs ambient noise trigger level analysis for a location and causes storage of an ambient noise trigger level threshold value for the location based on the ambient noise trigger level analysis. Furthermore, logic determines whether to cause modification to a state of an audio processor in response to detection of the audio processor at the location and comparison of a detected sound level at the location and the stored ambient noise trigger level threshold value. Other embodiments are also disclosed and claimed.
Abstract:
Various embodiments are generally directed to an apparatus, method and other techniques to receive thermal energy from a source, convert phase change material (102) from an initial state to a secondary state in response to absorption of the thermal energy, and transfer the thermal energy from the phase change material (102) to a thermoelectric component (106). In addition, various embodiments may include collecting, conducting and converting the thermal energy into electrical energy for use in powering one or more electronic components.
Abstract:
A system and method for implementing integrated and adjustable image projection with auto-image correction in electronic devices using an in-facing or world-facing image projector are disclosed. A particular embodiment includes an electronic device including: a lid; a base including a hinge coupling the lid with the base; and an image projection subsystem including an image projector installed in the lid, the image projector being configured to produce a projected image that is projected onto a projection surface, the angle of the projection being adjustable by adjusting the angle of the lid relative to the base.
Abstract:
Methods and apparatus relating to context aware secure touch implementation of integrated touch are described. In an embodiment, a touch sensitive display device is configured into one or more touch active regions and one or more touch inactive regions. The one or more of the touch inactive regions are capable to communicate wireless signals. Other embodiments are also disclosed and claimed.