Abstract:
A medical system comprises an entry guide, a display, and a processor. The processor may be configured to receive state information for an articulatable image capture device controllably extendable out of a distal end of the entry guide. The processor may be configured to generate a view including a graphical representation of a distal end portion of the articulatable image capture device as determined from the received state information and a graphical representation of a field of view of the articulatable image capture device extending distally from the distal end portion of the articulatable image capture device. The processor may also cause the view to be displayed on the display.
Abstract:
A system comprises a teleoperational manipulator configured to control operation of a medical instrument in a surgical environment. The system further comprises an operator input system including an input device and a processing unit including one or more processors. The processing unit is configured to display an image of a field of view of the surgical environment and display a menu including a set of directionally arranged menu options. The processing unit is further configured to transition the input device from a first constraint state for interaction with the medical instrument to a second constraint state for interaction with the menu. In the second constraint state, the input device is constrained to move in one or more directions based on the set of directionally arranged menu options.
Abstract:
A system comprises a teleoperational manipulator configured to control operation of a medical instrument in a surgical environment. The system further comprises an operator input system including an input device and a processing unit including one or more processors. The processing unit is configured to display an image of a field of view of the surgical environment and display a menu including a set of directionally arranged menu options. The processing unit is further configured to transition the input device from a first constraint state for interaction with the medical instrument to a second constraint state for interaction with the menu. In the second constraint state, the input device is constrained to move in one or more directions based on the set of directionally arranged menu options.
Abstract:
Medical instrument guidance systems and associated devices and methods are disclosed herein. In some embodiments, a method for providing guidance for percutaneous access to a target within an anatomic structure, includes receiving point cloud data from a sensor system coupled to an internal instrument as the internal instrument is moved within the anatomic structure; generating a 3D model of the anatomic structure based at least in part on the point cloud data; and receiving information for identifying a substructure within the 3D anatomic model. The substructure can provide access to the target. The method can further include determining an entry to the substructure; determining an approach path through the entry; and providing a graphical representation of the approach path.
Abstract:
A system comprises a teleoperational assembly including an operator control system and a first teleoperational manipulator configured for operation by an operator control device of the operator control system. The first teleoperational manipulator is configured to control the operation of a first medical instrument in a surgical environment. The system also comprises a processing unit including one or more processors. The processing unit is configured to display an image of a field of view of the surgical environment and display a menu proximate to an image of the first medical instrument in the image of the field of view. The menu includes at least one icon representing a function for the first medical instrument.
Abstract:
A method comprises displaying an image of a field of view of a surgical environment. A first medical instrument in the field of view may be coupled to a first manipulator in a teleoperational assembly. The method may comprise displaying a menu proximate to an image of the first medical instrument in the image of the field of view. The menu may include a plurality of icons wherein each icon is associated with a function for the first medical instrument. The method may also comprise identifying a selected icon from the plurality of icons based upon a movement of an operator control device of a teleoperational operator control system.
Abstract:
Systems and methods for remotely controlling a system using video are provided. A method in accordance the present disclosure includes detecting a video signal of an auxiliary system at a video input, wherein the video signal including images encoded with control information. The method also includes determining that the images included in the video signal include the control information. The method further includes extracting the control information from the images. Additionally, the method includes modifying operations of the system based on the control information.
Abstract:
A teleoperational system in a surgical environment comprises a teleoperational assembly including a first teleoperational arm, a first display device coupled to the teleoperational assembly, and a processor. The processor is configured to monitor a location of the first display device in the surgical environment and render a first image on the on the first display device. The first image is rendered based upon the location of the first display device in the surgical environment.
Abstract:
Methods, systems, and apparatuses for controlling surgical systems. In one aspect, a method includes obtaining, at a control subsystem associated with a surgical system, hardware configuration information from a first patient side subsystem that is communicatively coupled to and controlled by the control subsystem; determining a software version to be used by the control subsystem and the first patient side subsystem, wherein determining the software version includes selecting the software version from among a plurality of software versions, and wherein each software version of the plurality of software versions is associated with a particular patient side subsystem; instructing the first patient side subsystem to use the software version; determining whether the software version is currently loaded on the control subsystem; in response to determining that the software version is not currently loaded on the control subsystem, loading the software version on the control subsystem; and initializing the surgical system.
Abstract:
A medical robotic system includes an entry guide with surgical tools and a camera extending out of its distal end. To supplement the view provided by an image captured by the camera, an auxiliary view including articulatable arms of the surgical tools and/or camera is generated from sensed or otherwise determined information about their positions and orientations and displayed on a display screen from the perspective of a specified viewing point. Intuitive control is provided to an operator with respect to the auxiliary view while the operator controls the positioning and orienting of the camera.