Abstract:
The present disclosure relates to a heating, ventilation, and/or air conditioning (HVAC) system including a thermal light detector configured to detect a heat indication within a conditioned space. The HVAC system further includes a controller configured to receive feedback indicative of the heat indication from the thermal light detector and, based on the feedback, correlate the heat indication with a categorized event of a plurality of categorized events. The controller is further configured to adjust operation of the HVAC system based on the categorized event.
Abstract:
In one embodiment of the present disclosure, a heating, ventilating, and air conditioning (HVAC) system includes a refrigerant circuit configured to flow a refrigerant. The refrigerant circuit includes a compressor configured to compress the refrigerant, a condenser configured to receive the refrigerant from the compressor and to condense the refrigerant, a valve configured to receive a first portion of the refrigerant from the condenser and to decrease a pressure of the first portion of the refrigerant, and an evaporator configured to receive the first portion of the refrigerant from the condenser and configured to evaporate the first portion of the refrigerant. The refrigerant circuit also includes a refrigerant sub-circuit configured to receive a second portion of the refrigerant from the condenser and to convert thermal energy of the second portion of the refrigerant to electrical energy.
Abstract:
The present disclosure includes systems and methods for determining dimensions, shapes, and locations of rooms of a building using a mobile device for controlling heating, ventilation, and air conditioning (HVAC) provided to the rooms and building. A measuring device receives a shape of a room in the building and determines a dimension set of the room based on the shape of the room. The measuring device transmits the shape of the room and the dimension set to a mobile device that determines a layout of the building based on the shapes and the dimension sets corresponding to the rooms of the building. In this manner, the systems and methods provide the layout of the building more efficiently, resulting in an improved HVAC system installation and operation process.
Abstract:
A thermostat for a building space includes a network communication module and a processing circuit. The network communication module is communicatively coupled to at least one of one or more social media servers and one or more calendar servers. The processing circuit is configured to receive at least one of social media activity, social media events, and calendar events associated with a user via the network communication module. The processing circuit is further configured to determine an expected occupancy of the building based on at least one of the social media events and the calendar events. The processing circuit is further configured to adjust a setpoint of the thermostat based on at least one of the expected occupancy and the social media activity.
Abstract:
A heat exchanger system that includes a heat exchanger that includes a plurality of circuits wherein the heat exchanger is configured to exchange heat between a refrigerant and a working fluid. The heat exchanger system also includes a valve configured to fluidly couple a circuit of the plurality of circuits to a flow path of the refrigerant. Further, the heat exchanger system includes a controller that is configured to receive feedback indicative of an operating parameter of the heat exchanger system and actuate the valve based on the operating parameter.
Abstract:
The present disclosure relates to a heating, ventilation, and air conditioning (HVAC) unit having a vapor compression circuit including a compressor and a heat exchanger. The HVAC unit includes a controller configured to provide a first signal to control the compressor, and provide a second signal to control a variable speed fan associated with the heat exchanger based on a target speed. The HVAC unit further includes a pressure activated device coupled between the controller and the compressor, wherein the pressure activated device is configured to temporarily block the first signal from the controller while a refrigerant pressure within the vapor compression circuit is greater than a threshold value. In response to determining that the pressure activated device has blocked the first signal for at least a threshold time period, the controller is configured to both deactivate the first signal and provide the second signal for an equilibration time.
Abstract:
A thermostat for a building space. The thermostat includes a user interface and a processing circuit. The user interface is configured to serve notifications to a user and receive input from the user. The communications interface is configured to perform bidirectional data communications with HVAC equipment controlled by the thermostat. The communications interface is configured to receive performance information for the HVAC equipment. The processing circuit is configured to provide control signals to the HVAC equipment to achieve a setpoint for the building space. The processing circuit is further configured to evaluate the performance information for the HVAC equipment to determine a recommendation for improving HVAC equipment performance. The processing circuit is further configured to automatically adjust at least one of the setpoint and the control signals provided to the HVAC equipment based on the recommendation for improving HVAC equipment performance.
Abstract:
A thermostat for a building space includes an electronic display, a frame, a touch sensitive interface, and a processing circuit. The touch-sensitive interface has a first portion that overlays the electronic display and a second portion that overlays the frame. The touch-sensitive interface is configured to receive touch-based input via both the first portion and the second portion. The processing circuit is configured to define one or more locations within the second portion that correspond to touch-sensitive buttons. The locations of the touch-sensitive buttons are customizable and can be changed by a user. The thermostat further including at least one of a sticker and a skin that covers at least part of the second portion and visually marks the locations of the touch-sensitive buttons.
Abstract:
A heating, ventilation, and air conditioning (HVAC) system includes a controller associated with a residence. The controller is configured to determine an expected value range for an operating parameter of a component of the HVAC system. Additionally, the controller is configured to receive a signal from a sensor indicative of a current value of the operating parameter of the component and determine if the current value of the operating parameter is outside the expected value range. Based on the determination that the current value is outside the expected value range, the controller is additionally configured to initiate a diagnostic mode of the controller. In the diagnostic mode, the controller is configured to collect diagnostic data associated with the HVAC system.
Abstract:
A thermostat for a building space includes a communications interface, an electronic display, and a processing circuit. The communications interface is configured to receive service provider information via a network connection. The electronic display includes a user interface configured to display the service provider information. The processing circuit is configured to determine when to display the service provider information on the electronic display by monitoring thermostat events.