摘要:
Method and apparatus for reducing metal oxide surfaces to modified metal surfaces are disclosed. Metal oxide surfaces are reduced to form a film integrated with a metal seed layer by contacting a solution with a reducing agent with the metal oxide surfaces. The solution with the reducing agent can contact the metal oxide surfaces under conditions that form an integrated film with the metal seed layer, and that reduces reoxidation from exposure the ambient environment. In some embodiments, an additive can be included with the reducing agent to form a surface protecting layer on the metal seed layer. In some embodiments, the metal is copper used in damascene copper structures.
摘要:
Methods, apparatuses, and various apparatus components, such as base plates, lipseals, and contact ring assemblies are provided for reducing contamination of the contact area in the apparatuses. Contamination may happen during removal of semiconductor wafers from apparatuses after the electroplating process. In certain embodiments, a base plate with a hydrophobic coating, such as polyamide-imide (PAI) and sometimes polytetrafluoroethylene (PTFE), are used. Further, contact tips of the contact ring assembly may be positioned further away from the sealing lip of the lipseal. In certain embodiments, a portion of the contact ring assembly and/or the lipseal also include hydrophobic coatings.
摘要:
A substantially uniform layer of a metal is electroplated onto a work piece having a seed layer thereon. This is accomplished by employing a “high resistance ionic current source,” which solves the terminal problem by placing a highly resistive membrane (e.g., a microporous ceramic or fretted glass element) in close proximity to the wafer, thereby swamping the system's resistance. The membrane thereby approximates a constant current source. By keeping the wafer close to the membrane surface, the ionic resistance from the top of the membrane to the surface is much less than the ionic path resistance to the wafer edge, substantially compensating for the sheet resistance in the thin metal film and directing additional current over the center and middle of the wafer.
摘要:
A disclosed form of mechanically assisted electroplating leads to a flat, thin, overburden. In one example, an accelerator is deposited on a copper surface and mechanically removed in a simplified CMP-like apparatus. The wafer is then plated in an electrolyte containing little or no accelerating additives.
摘要:
Methods, apparatuses, and various apparatus components, such as base plates, lipseals, and contact ring assemblies are provided for reducing contamination of the contact area in the apparatuses. Contamination may happen during removal of semiconductor wafers from apparatuses after the electroplating process. In certain embodiments, a base plate with a hydrophobic coating, such as polyamide-imide (PAI) and sometimes polytetrafluoroethylene (PTFE), are used. Further, contact tips of the contact ring assembly may be positioned further away from the sealing lip of the lipseal. In certain embodiments, a portion of the contact ring assembly and/or the lipseal also include hydrophobic coatings.
摘要:
A semiconductive counter electrode covers a highly electronically conductive electric current buss. The semiconductive counter electrode is impervious to ion flow. A substrate holder is operable to hold a substrate and to form a thin fluid gap between the semiconductive counter electrode and a substrate surface. A thin liquid electrolyte layer is located in the thin fluid gap. A power supply connected to the electric current buss and a peripheral edge of a conductive substrate surface is able to generate a potential difference between the electric current buss and the semiconductive counter electrode, on one side of the electrolyte layer, and the substrate on the other side. The semiconductive counter electrode provides a substantial resistance in the various current flow paths between the electric current buss and the semiconductive counter electrode, on one side, and the conductive substrate surface, on the other, thereby enhancing control of current distribution.
摘要:
An electroplating apparatus for filling recessed features on a semiconductor substrate includes an electrolyte concentrator configured for concentrating an electrolyte having Cu2+ ions to form a concentrated electrolyte solution that would have been supersaturated at 20° C. The electrolyte is maintained at a temperature that is higher than 20° C., such as at least at about 40° C. The apparatus further includes a concentrated electrolyte reservoir and a plating cell, where the plating cell is configured for electroplating with concentrated electrolyte at a temperature of at least about 40° C. Electroplating with electrolytes having Cu2+ concentration of at least about 60 g/L at temperatures of at least about 40° C. results in very fast copper deposition rates, and is particularly well-suited for filling large, high aspect ratio features, such as through-silicon vias.
摘要:
Methods, apparatuses, and various apparatus components, such as base plates, lipseals, and contact ring assemblies are provided for reducing contamination of the contact area in the apparatuses. Contamination may happen during removal of semiconductor wafers from apparatuses after the electroplating process. In certain embodiments, a base plate with a hydrophobic coating, such as polyamide-imide (PAI) and sometimes polytetrafluoroethylene (PTFE), are used. Further, contact tips of the contact ring assembly may be positioned further away from the sealing lip of the lipseal. In certain embodiments, a portion of the contact ring assembly and/or the lipseal also include hydrophobic coatings.
摘要:
A substantially uniform layer of a metal is electroplated onto a work piece having a seed layer thereon. This is accomplished by employing a “high resistance ionic current source,” which solves the terminal problem by placing a highly resistive membrane (e.g., a microporous ceramic or fretted glass element) in close proximity to the wafer, thereby swamping the system's resistance. The membrane thereby approximates a constant current source. By keeping the wafer close to the membrane surface, the ionic resistance from the top of the membrane to the surface is much less than the ionic path resistance to the wafer edge, substantially compensating for the sheet resistance in the thin metal film and directing additional current over the center and middle of the wafer.
摘要:
Disclosed are methods of depositing and annealing a copper seed layer. A copper seed layer may be deposited on a ruthenium layer disposed on a surface of a wafer and on features in the wafer. The thickness of the ruthenium layer may be about 40 Angstroms or less. The copper seed layer may be annealed in a reducing atmosphere having an oxygen concentration of about 2 parts per million or less. Annealing the copper seed layer in a low-oxygen atmosphere may improve the properties of the copper seed layer.