Abstract:
An apparatus for electroplating a layer of metal on the surface of a wafer includes a second cathode located remotely with respect to the wafer. The remotely positioned second cathode allows modulation of current density at the wafer surface during an entire electroplating process. The second cathode diverts a portion of current flow from the near-edge region of the wafer and improves the uniformity of plated layers. The remote position of second cathode allows the insulating shields disposed in the plating bath to shape the current profile experienced by the wafer, and therefore act as a “virtual second cathode”. The second cathode may be positioned outside of the plating vessel and separated from it by a membrane.
Abstract:
An apparatus for electroplating a layer of metal onto the surface of a wafer includes an ionically resistive ionically permeable element located in close proximity of the wafer and an auxiliary cathode located between the anode and the ionically resistive ionically permeable element. The ionically resistive ionically permeable element serves to modulate ionic current at the wafer surface. The auxiliary cathode is configured to shape the current distribution from the anode. The provided configuration effectively redistributes ionic current in the plating system allowing plating of uniform metal layers and mitigating the terminal effect.
Abstract:
An apparatus for electroplating a layer of metal on the surface of a wafer includes a second cathode located remotely with respect to the wafer. The remotely positioned second cathode allows modulation of current density at the wafer surface during an entire electroplating process. The second cathode diverts a portion of current flow from the near-edge region of the wafer and improves the uniformity of plated layers. The remote position of second cathode allows the insulating shields disposed in the plating bath to shape the current profile experienced by the wafer, and therefore act as a “virtual second cathode”. The second cathode may be positioned outside of the plating vessel and separated from it by a membrane.
Abstract:
Disclosed is a procedure for bottom-up fill of electroless copper film in sub-micron integrated circuit features. By repeatedly placing an integrated circuit wafer in an electroless bath, a transient period of time of accelerated growth in the feature is repeated to achieve many small layers of deposition, each of which is thicker near the base of the feature. The net result is filing of the feature from the bottom-up fill without formation of voids. The electroless bath employed to form the continuous electroless copper film may include a reducing agent, a complexing agent, a source of copper ions, a pH adjuster, and optionally one or more surfactants and/or stabilizers.
Abstract:
The present invention provides apparatus and methods for controlling flow dynamics of a plating fluid during a plating process. The invention achieves this fluid control through use of a diffuser membrane. Plating fluid is pumped through the membrane; the design and characteristics of the membrane provide a uniform flow pattern to the plating fluid exiting the membrane. Thus a work piece, upon which a metal or other conductive material is to be deposited, is exposed to a uniform flow of plating fluid.
Abstract:
The orientation of a wafer with respect to the surface of an electrolyte is controlled during an electroplating process. The wafer is delivered to an electrolyte bath along a trajectory normal to the surface of the electrolyte. Along this trajectory, the wafer is angled before entry into the electrolyte for angled immersion. A wafer can be plated in an angled orientation or not, depending on what is optimal for a given situation. Also, in some designs, the wafer's orientation can be adjusted actively during immersion or during electroplating, providing flexibility in various electroplating scenarios.
Abstract:
An electroplating apparatus for filling recessed features on a semiconductor substrate includes an electrolyte concentrator configured for concentrating an electrolyte having Cu2+ ions to form a concentrated electrolyte solution that would have been supersaturated at 20° C. The electrolyte is maintained at a temperature that is higher than 20° C., such as at least at about 40° C. The apparatus further includes a concentrated electrolyte reservoir and a plating cell, where the plating cell is configured for electroplating with concentrated electrolyte at a temperature of at least about 40° C. Electroplating with electrolytes having Cu2+ concentration of at least about 60 g/L at temperatures of at least about 40° C. results in very fast copper deposition rates, and is particularly well-suited for filling large, high aspect ratio features, such as through-silicon vias.
Abstract:
An apparatus for electroplating a layer of metal onto the surface of a wafer includes an ionically resistive ionically permeable element located in close proximity of the wafer and an auxiliary cathode located between the anode and the ionically resistive ionically permeable element. The ionically resistive ionically permeable element serves to modulate ionic current at the wafer surface. The auxiliary cathode is configured to shape the current distribution from the anode. The provided configuration effectively redistributes ionic current in the plating system allowing plating of uniform metal layers and mitigating the terminal effect.
Abstract:
Transistor architectures and fabrication processes generate channel strain without adversely impacting the efficiency of the transistor fabrication process while preserving the material quality and enhancing the performance of the resulting transistor. Transistor strain is generated is PMOS devices using a highly compressive post-salicide amorphous carbon capping layer applied as a blanket over on at least the source and drain regions. The stress from this capping layer is uniaxially transferred to the PMOS channel through the source-drain regions to create compressive strain in PMOS channel.
Abstract:
Embodiments of a closed-contact electroplating cup are disclosed. One embodiment comprises a cup bottom comprising an opening, and a seal disposed on the cup bottom around the opening. The seal comprises a wafer-contacting peak located substantially at an inner edge of the seal. The embodiment also comprises an electrical contact structure disposed over a portion of the seal, wherein the electrical contact structure comprises an outer ring and a plurality of contacts extending inwardly from the outer ring, and wherein each contact has a generally flat wafer-contacting surface. The embodiment further comprises a wafer-centering mechanism configured to center a wafer in the cup.