Abstract:
A computer system which includes a microprocessor, a bus coupled to the microprocessor, a video memory coupled to the bus and a display device. A write controller is also provided which is coupled to the bus and which controls writing of an image signal into the video memory by supplying a write address to the video memory. The write controller operates to change a range of the write address according to a plurality of write address parameters set by the microprocessor so that a memory area of the video memory into which the image signal is to be written is changed according to the range of the write address. Further, a size of an image represented by the image signal to be written into the video memory is changed. A read controller is also provided and is coupled to the bus for controlling reading of an image signal out of the video memory by supplying a read address to the video memory asynchronously with the writing into the video memory, and in synchronism with the synchronizing signal supplied to the display device along with the image signal read out of the video memory.
Abstract:
An image control device for use in a computer system which includes a microprocessor, a bus coupled to the microprocessor, a video memory coupled to the bus and a display device. A write controller is also provided which is coupled to the bus and which controls writing of an image signal into the video memory by supplying a write address to the video memory. The write controller operates to change a range of the write address according to a plurality of write address parameters set by the microprocessor so that a memory area of the video memory into which the image signal is to be written is changed according to the range of the write address. Further, a size of an image represented by the image signal to be written into the video memory is changed. A read controller is also provided and is coupled to the bus for controlling reading of an image signal out of the video memory by supplying a read address to the video memory asynchronously with the writing into the video memory, and in synchronism with the synchronizing signal supplied to the display device along with the image signal read out of the video memory.
Abstract:
A multiplier 7 multiplies an adding address stored in an adding address memory 3 by a vertical count output from a vertical counter unit 4. A first adder 8 adds the product of the multiplier 7 to an offset address stored in the offset address memory 2. A second adder 9 adds the sum in the first adder 8 to a horizontal count in a horizontal counter unit 5. A third adder 10 adds the sum in the second adder 9 to each of area-start addresses for RGB color components stored in three area-start address memory units 6R, 6G, and 6B, respectively. An output AD3 from the third adder 10 becomes an access address in DMA transfer. The access address in DMA transfer is accordingly calculated by simple arithmetic operation in a DMA controller 34, which thereby attains high-speed DMA transfer.
Abstract:
A voltage controlled oscillator (VCO) circuit includes a current mirror circuit section and oscillator circuit section to provide an oscillation frequency based on the output current of the current mirror circuit section. To vary the oscillation over a wide range, a fixed reference voltage circuit is connected to the current mirror circuit, and either a source follower circuit made of a MOSFET or a FET or an emitter follower circuit made of a bipolar transistor is included is also connected to the current mirror circuit to selectively varying the output current of the current mirror circuit section upon application of a control voltage applied to the follower circuit. Thus, the follower circuit is controlled by a control voltage while the output current of the current mirror circuit varies depending on the magnitude of the control voltage, and, in turn, the oscillating frequency of the oscillator circuit section varies over a wide frequency range, e.g., in excess of 100 dB, in accordance with the output current.
Abstract:
A pressure detection device includes a buffer member and a sensor assembly. The buffer member is deformable by a pressure change, and includes a plurality of magnets in an evenly dispersed arrangement. The sensor assembly includes at least one magnetic sensor to detect a variation of a magnetic field accompanied by deformation of the buffer member.
Abstract:
An energy converter includes magnetic coils of N phases (N is an integer of 3 or more), and a PWM drive circuit for driving the magnetic coils of N phases, wherein the magnetic coil of each phase can be independently controlled by the PWM drive circuit.
Abstract:
The electrically powered device is provided. The electrically powered device includes: multiple stators structured to respectively have electromagnetic coils and position sensors; a shaft fastened to the multiple stators; and multiple rotors structured to respectively have permanent magnets and arranged to rotate around the shaft; wherein the multiple rotors are connected with a driven member driven by the electrically powered device.
Abstract:
The brushless motor has a first and second drive member. The first drive member is equipped with M phase coil groups each having N electromagnetic coils where M is an integer of 1 or greater and N is an integer of 1 or greater. The second drive member has a plurality of permanent magnets, and is able to move relative to the first drive member. The first drive member has 2 (M×N) magnetic body cores. Each phase electromagnetic coil is coiled on a periodically selected magnetic body core at a ratio of 1 to 2M from among the arrangement of 2 (M×N) magnetic body cores.
Abstract:
The information processing apparatus equipped with a microprocessor is provided. The information processing apparatus equipped with a microprocessor includes: an operation clock signal generator that generates a frequency-variable operation clock signal supplied to the microprocessor; and a power supply voltage generator that determines a value of a power supply voltage to be supplied to the microprocessor according to a logarithm of a frequency of the operation clock signal and generates the power supply voltage.
Abstract:
The brushless electric machine includes a first drive member (30U) having a plurality of permanent magnets (32U); a second drive member (10) having a plurality of electromagnetic coils and capable of movement relative to the first drive member (30U); and a third drive member (30L) disposed at the opposite side from the first drive member (30U) with the second drive member (10) therebetween, and having a fixed relative positional relationship with respect to the first drive member (30U). The second drive member (10) has magnetic sensors (40A, 40B) for detecting relative position of the first and second drive members; and a control circuit for carrying out control of the brushless electric machine utilizing the output signals of the magnetic sensors. The third drive member (30L) has at locations facing the permanent magnets of the first drive member (30U) a plurality of magnetic field strengthening members (32L) for strengthening the magnetic field at the location of the second drive member (10) in conjunction with the permanent magnets.