Abstract:
Described herein are fluorescent compounds and methods and comprising these compounds. The compounds disclosed herein are carbopyronine reagents that fluoresce in the red portion of the UV/VIS spectrum and provide bright fluorescence intensity, uniform cell staining, and good retention within live cells as well as low toxicity toward cells.
Abstract:
Provided in certain embodiments are new methods for forming azido modified biomolecule conjugates of reporter molecules, carrier molecules or solid support. In other embodiments are provided methods for enzymatically labeling a biomolecules with an azide group.
Abstract:
Disclosed herein are compounds, compositions, methods, and kits for detecting reactive oxygen species (ROS) by conventional fluorescence microscopy, fluorescence spectroscopy, flow cytometry, and/or high content imaging. The compounds disclosed herein are novel reduced nucleic acid binding cyanine dyes, which dyes are probes for detecting ROS and measuring oxidative stress in cells either in vitro and/or in vivo. Also described herein are processes for preparing novel reduced dyes, i.e., ROS probes, for use in the disclosed compositions, methods and kits.
Abstract:
The present disclosure is directed to fluorogenic schiff base-forming dyes capable of detecting analytes containing aldehyde and ketone groups. The dyes contain nucleophilic hydrazinyl appendages and are capable of binding and detecting analytes in situ.
Abstract:
The present disclosure is directed to a reactive ester agent for conjugating a click-reactive group to a carrier molecule or solid support. The reactive ester agent has the general formula IA, wherein the variables R1, R2, R3, Ra and L are described throughout the application.
Abstract:
Described herein are compounds, methods, and kits for long-term tracking of cell proliferation, differentiation, and/or function. The compounds of the present invention are novel cell-tracking reagents, efficiently excitable with a 405-nm violet laser, that provide bright fluorescence intensity, uniform cell staining, and good retention within cells as well as low toxicity toward cells.
Abstract:
The present invention provides fluorogenic compounds for the detection of target metal ions wherein the compounds exhibit a Stokes shift greater than 50 nm and the detectable signal is modulated by photoinduced electron transfer (PET). The present compounds consist of three functional elements, the ion sensing moiety (chelating moiety), the reporter moiety (fluorophore or fluorescent protein) and spacer or linker between the sensing and reporter moieties of the present compound that allows for PET upon binding of a metal ion and excitation by an appropriate wavelength.
Abstract:
The present invention provides fluorogenic compounds for the detection of target metal ions wherein the compounds exhibit a Stokes shift greater than 50 nm and the detectable signal is modulated by photoinduced electron transfer (PET). The present compounds consist of three functional elements, the ion sensing moiety (chelating moiety), the reporter moiety (fluorophore or fluorescent protein) and spacer or linker between the sensing and reporter moieties of the present compound that allows for PET upon binding of a metal ion and excitation by an appropriate wavelength.
Abstract:
This disclosure relates to the field of fluorescent dyes, and in particular, compositions and methods for increasing fluorescent signals and the reduction of fluorescent quenching.
Abstract:
Low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations for modifying biomolecules is provided. Compositions, methods, and kits relating to low-copper click chemistry, 1.3-dipolar cycloadditions, and Staudinger ligations are also provided.