摘要:
A material for a thick film element is deposited onto a surface of a first substrate to form a thick film element structure having a thickness of between greater than 10 μm to 100 μm. The at least one thick film element structure is bonded to a second substrate. Thereafter, the first substrate is removed from the at least one thick film element structure using a liftoff process which includes emitting, from a radiation source (such as a laser or other appropriate device), a beam through the first substrate to an attachment interface formed between the first substrate and the at least one thick film element structure at the surface of the first substrate. The first substrate is substantially transparent at the wavelength of the beam, and the beam generates sufficient energy at the interface to break the attachment.
摘要:
A micro-electromechanical dimensioned bimorph structure includes a first element layer structure, and a second element layer structure. The element layer structures are provided in various combinations, including piezoelectric/piezoelectric, antiferroelectric/antiferroelectric or antiferroelectric/piezoelectric. The layer thickness of the element structure is less than 100 μm. A bonding layer bonds the first element structure directly to the second element structure and the bonding layer thickness is less than 10 μm. The bimorph structure can be made in various forms including a cantilever or a diaphragm. Microfluidic devices using the bimorph structures may also be constructed.
摘要:
A solar cell is formed on an n-type semiconductor substrate having a p+ emitter layer by forming spaced-apart contact/protection structures on the emitter layer, depositing a blanket dielectric passivation layer over the substrate's upper surface, utilizing laser ablation to form contact openings through the dielectric layer that expose corresponding contact/protection structures, and then forming metal gridlines on the upper surface of the dielectric layer that are electrically connected to the contact structures by way of metal via structures extending through associated contact openings. The contact/protection structures serve both as protection against substrate damage during the contact opening formation process (i.e., to prevent damage of the p+ emitter layer caused by the required high energy laser pulses), and also serve as optional silicide sources that facilitate optimal contact between the metal gridlines and the p+ emitter layer.
摘要:
A method of forming a fluid ejector includes forming a recess well into a silicon wafer on a first side of the silicon wafer, and filling the recess well with a sacrificial material. A thin layer structure is deposited onto the first side of a silicon wafer covering the filled recess well. Then a thin film piezoelectric is bonded or deposited to the thin layer structure, and a hole is formed in the thin layer structure exposing at least a portion of the sacrificial material. The sacrificial material is removed from the recess well, wherein the hole in the thin layer in the recess well with the sacrificial material removed, form a fluid inlet. An opening area in the silicon wafer is formed on a second side of the silicon wafer. Then a nozzle plate is formed having a recess portion and an aperture within the recess portion. The nozzle plate is attached to the second side of the silicon wafer, with the recess portion positioned within the open area. The thin layer structure and the recess portion of the nozzle plate define a depth of a fluid cavity defined by the thin layer structure, the recess portion of the nozzle plate and the sidewalls of the silicon wafer.
摘要:
A solar cell is formed on an n-type semiconductor substrate having a p+ emitter layer by forming spaced-apart contact/protection structures on the emitter layer, depositing a blanket dielectric passivation layer over the substrate's upper surface, utilizing laser ablation to form contact openings through the dielectric layer that expose corresponding contact/protection structures, and then forming metal gridlines on the upper surface of the dielectric layer that are electrically connected to the contact structures by way of metal via structures extending through associated contact openings. The contact/protection structures serve both as protection against substrate damage during the contact opening formation process (i.e., to prevent damage of the p+ emitter layer caused by the required high energy laser pulses), and also serve as optional silicide sources that facilitate optimal contact between the metal gridlines and the p+ emitter layer.
摘要:
A method is provided that includes providing a mold on a temporary substrate, e.g., a sapphire substrate. Next, a material such as PZT paste is deposited into the mold. Then, the mold is removed to obtain elements formed by the mold. The formed elements will then be sintered. After sintering, electrode deposition is optionally performed. The sintered elements are then bonded to a final target substrate and released from the temporary substrate through laser liftoff. Further, electrodes may also be optionally deposited at this point.
摘要:
Interdigitated back contact (IBC) solar cells are produced by depositing spaced-apart parallel pads of a first dopant bearing material (e.g., boron) on a substrate, heating the substrate to both diffuse the first dopant into corresponding first (e.g., p+) diffusion regions and to form diffusion barriers (e.g., borosilicate glass) over the first diffusion regions, and then disposing the substrate in an atmosphere containing a second dopant (e.g., phosphorus) such that the second dopant diffuses through exposed surface areas of the substrate to form second (e.g., n+) diffusion regions between the first (p+) diffusion regions (the diffusion barriers prevent the second dopant from diffusion into the first (p+) diffusion regions). The substrate material along each interface between adjacent first (p+) and second (n+) diffusion regions is then removed (e.g., using laser ablation) such that elongated grooves, which extend deeper into the substrate than the diffused dopant, are formed between adjacent diffusion regions.
摘要:
Techniques are disclosed for surface texturing multicrystalline silicon using drop jetting technology to form mask or etch patterns on a surface of a multicrystalline silicon substrate.
摘要:
Disclosed is a MEMS device which comprises at least one shape memory material such as a shape memory alloy (SMA) layer and at least one stressed material layer. Examples of such MEMS devices include an actuator, a micropump, a microvalve, or a non-destructive fuse-type connection probe. The device exhibits a variety of improved properties, for example, large deformation ability and high energy density. Also provided is a method of easily fabricating the MEMS device in the form of a cantilever-type or diaphragm-type structure.
摘要:
A method of producing at least one thick film element, including depositing a material on a surface of at least one first substrate to form at least one thick film element structure having a thickness of approximately greater than 10 μm to 100 μm. Then, then the at least one thick film element structure is bonded to a second substrate, and the at least one first substrate is removed from the at least one thick film element structure using a lift-off process employing radiation energy. The lift-off process including emitting, from a radiation source, a radiation beam through the first substrate to an attachment interface formed between the first substrate and the at least one thick film element structure at the first surface of the first substrate. The first substrate being substantially transparent at the wavelength of the radiation beam, permitting the radiation beam to generate sufficient energy at the interface to break the attachment.