Abstract:
Various embodiments comprise apparatuses such as those having a block of memory divided into sub-blocks that share a common data line. Each of the sub-blocks of the block of memory corresponds to a respective one of a number of segmented sources. Each of the segmented sources is electrically isolated from the other segmented sources of the block of memory. Additional apparatuses and methods of operation are described.
Abstract:
Apparatuses and methods for segmented SGS lines are described. An example apparatus may include first and second pluralities of memory subblocks of a memory block. The apparatus may include a first select gate control line associated with the first plurality of memory subblocks and a second select gate control line associated with the second plurality of memory subblocks. The first select gate control line may be coupled to a first plurality of select gate switches of the first plurality of memory subblocks. The second select gate control line may be coupled to a second plurality of select gate switches of the second plurality of memory subblocks. The first and second pluralities of select gate switches may be coupled to a source. The apparatus may include a plurality of memory access lines associated with each the first and second pluralities of memory subblocks.
Abstract:
The present disclosure includes apparatuses and methods for memory system data management. A number of embodiments include writing data from a host to a buffer in the memory system, receiving, at the buffer, a notification from a memory device in the memory system that the memory device is ready to receive data, sending at least a portion of the data from the buffer to the memory device, and writing the portion of the data to the memory device.
Abstract:
The present disclosure includes apparatuses and methods for memory system data management. A number of embodiments include writing data from a host to a buffer in the memory system, receiving, at the buffer, a notification from a memory device in the memory system that the memory device is ready to receive data, sending at least a portion of the data from the buffer to the memory device, and writing the portion of the data to the memory device.
Abstract:
Apparatuses and methods for providing power responsive a power loss are disclosed herein. A power chip may comprise a power sensor, a write command control logic, and an array. The power sensor may be configured to detect a power loss of a power supply and provide a power loss control signal responsive, at least in part, to detecting the power loss of the power supply. The write command control logic may be coupled to the power sensor and may be configured to receive the power loss control signal. The write command control logic may be further configured to provide a write command responsive, at least in part, to receipt of the power loss control signal. The array may include a plurality of capacitors configured to store power and further configured to provide power during the power loss.
Abstract:
A memory device includes a content addressable memory (CAM) block storing a plurality of stored search keys. The memory device further includes control logic that determines a first number of memory cells in at least one string of the CAM block storing one of the plurality of stored search keys, the first number of memory cells storing a first logical value, and stores a calculated parity value representing the first number of memory cells in a page cache associated with the CAM block. The control logic further reads stored parity data from one or more memory cells in the at least one string, the one or more memory cells connected to one or more additional wordlines in the CAM block, and compares the calculated parity value to the stored parity data to determine whether an error is present in the one of the plurality of stored search keys in the CAM block.
Abstract:
Memories might include a plurality of strings of memory cells, a plurality of access lines each connected to the strings of memory cells, and a controller configured to cause the memory to determine a particular voltage level applied to each of the access lines that is deemed to activate each memory cell of a first subset of the strings of series-connected memory cells programmed to store respective data states that are each lower than or equal to a first data state of a plurality of data states, apply the particular voltage level to a particular access line of the plurality of access lines, and for each memory cell connected to the particular access line that is contained in a second subset of the strings of series-connected memory cells, determine whether that memory cell is deemed to be activated while applying the particular voltage level to the particular access line.
Abstract:
A memory device includes a content addressable memory (CAM) block storing a plurality of stored search keys. The memory device further includes control logic that determines a first number of memory cells in at least one string of the CAM block storing one of the plurality of stored search keys, the first number of memory cells storing a first logical value, and stores a calculated parity value representing the first number of memory cells in a page cache associated with the CAM block. The control logic further reads stored parity data from one or more memory cells in the at least one string, the one or more memory cells connected to one or more additional wordlines in the CAM block, and compares the calculated parity value to the stored parity data to determine whether an error is present in the one of the plurality of stored search keys in the CAM block.
Abstract:
Memory including an array of memory cells might include an input buffer having calibration circuitry, a first input, a second input, and an output; and calibration logic having an input selectively connected to the output of the input buffer and comprising an output connected to the calibration circuitry, wherein the calibration logic is configured to cause the memory to determine whether the input buffer exhibits offset while a particular voltage level is applied to the first and second inputs of the input buffer, and, in response to determining that the selected input buffer exhibits offset, apply an adjustment to the calibration circuitry while the particular voltage level is applied to the first and second inputs until a logic level of the output of the selected input buffer transitions.
Abstract:
Apparatuses and methods for reducing read disturb are described herein. An example apparatus may include a first memory subblock including a first select gate drain (SGD) switch and a first select gate source (SGS) switch, a second memory subblock including a second SGD switch and a second SGS switch, and an access line associated with the first and second memory subblocks. The apparatus may include a control unit configured to enable the first and second SGD switches and the first and second SGS switches during a first portion of a read operation and to provide a first voltage on the access line during the first portion. The control unit may be configured to disable the first SGD switch and the first SGS switches during a second portion of the read operation and to provide a second voltage on the access line during the second portion.