Abstract:
A source of charge carriers in thin film transistor-based memory devices is provided for a memory. The source of charge carriers can include a diode having a first and second terminal. A NAND string coupled on a first end via a first switch to a bit line, is coupled on a second end via a second switch to the first terminal of the diode. Separately drivable first and second supply lines are coupled to the first and second terminals, respectively of the diode. Circuitry is included that is coupled to the first and second supply lines, that is configured to bias the first and second supply lines with different bias conditions depending on the mode of operation, including forward bias conditions and reverse bias conditions.
Abstract:
An integrated circuit and methods for manufacturing and operating the same are provided. The integrated circuit comprises a fork architecture and a first conductive structure. The fork architecture comprises a handle portion and prong portions extending from the handle portion. The fork architecture comprises a stacked structure and a dielectric layer. The dielectric layer is between the first conductive structure and the handle portion of the stacked structure.
Abstract:
A device includes a substrate with a recess, having a bottom and sides, extending into the substrate from the substrate's upper surface. The sides include first and second sides oriented transversely to one another. A stack of alternating active and insulating layers overlie the substrate's surface and the recess. At least some of the active layers have an upper and lower portions extending along upper and lower planes over and generally parallel to the upper surface and to the bottom, respectively. The active layers have first and second upward extensions positioned along the first and second sides to extend from the lower portions of their respective active layers. Conductive strips adjoin the second upward extensions of the said active layers. The conductive strips can comprise sidewall spacers on the sides of the second upward extensions, the conductive strips connected to overlying conductors by interlayer conductors.
Abstract:
A memory device, such as a 3D AND type flash memory, and a compensation method of data retention thereof are provided. The compensation method includes the following. A reading operation is performed on each of a plurality of programmed memory cells of the memory device. Whether a charge loss phenomenon occurs in the programmed memory cells is determined through the reading operation to set the programmed memory cells to be charge loss memory cells. A refill program operation is performed on the charge loss memory cells.
Abstract:
A three-dimensional AND flash memory device includes a stack structure, isolators, channel pillars, source pillars and drain pillars, and charge storage structures. The stack structure is located on a dielectric substrate and includes gate layers and insulating layers alternately stacked with each other. The isolators divide the stack structure into sub-blocks and include walls and slits. The walls include isolation layers and the insulating layers stacked alternately with each other, and the isolation layers are buried in the gate layers. The slits alternate with the walls, and each of the slits extends through the stack structure. The channel pillars extend through the stack structure in each of the sub-blocks. The source pillars and the drain pillars are located in the channel pillars. The charge storage structures are located between the gate layers and the channel pillar.
Abstract:
A memory device and a manufacturing method for the same are provided. The memory device comprises a stack structure and a channel structure. The stack structure is on a substrate and comprises gate electrodes and insulating films stacked alternately. The channel structure is electrically coupled to the gate electrodes, and is on sidewall surfaces of the gate electrodes. The channel structure comprises a first channel structure and a second channel structure. The second channel structure is on an upper surface of the first channel structure. The first channel structure and/or the second channel structure has a ring shape.
Abstract:
A memory device includes a channel element, a gate electrode layer and a memory element. The channel element has a U shape. The gate electrode layer is electrically coupled to the channel element. The memory element surrounds a sidewall channel surface of the channel element.
Abstract:
A memory device that includes: a memory controller; a control unit; and a memory cell array that includes memory blocks, each memory block comprising: memory cells, word lines respectively coupled to the memory cells, signal lines to transfer signals to perform programming operations to one or more memory cells of the memory cells, a first metal layer coupled to a first group of lines and configured to route the first group of the lines to the control unit, the lines comprising the word lines and the signal lines, and a second metal layer coupled to a second group of the lines and configured to route the second group of the lines to the control unit, wherein the memory controller is configured to: control the control unit to (i) select particular memory cells and (ii) program data to the particular memory cells is disclosed.
Abstract:
A stair contact structure, a manufacturing method of a stair contact structure, and a memory structure are provided. The stair contact structure includes several layers of stacking structures and a first etch stop layer. Each stacking structure includes a conductive layer and an insulating layer. The conductive layers and the insulating layers are interlaced. The first etch stop layer penetrates through the stacking structures and extends along a first horizontal direction. The conductive layers of the stacking structures located at a first sidewall of the first etch stop layer have a plurality of contact points, and the contact points are arranged along the first horizontal direction to form a stair structure having a plurality of stages.
Abstract:
A stair contact structure, a manufacturing method of a stair contact structure, and a memory structure are provided. The stair contact structure includes several layers of stacking structures and a first etch stop layer. Each stacking structure includes a conductive layer and an insulating layer. The conductive layers and the insulating layers are interlaced. The first etch stop layer penetrates through the stacking structures and extends along a first horizontal direction. The conductive layers of the stacking structures located at a first sidewall of the first etch stop layer have a plurality of contact points, and the contact points are arranged along the first horizontal direction to form a stair structure having a plurality of stages.