摘要:
A method in one embodiment includes forming an electric lapping guide layer; forming a write pole; forming a first gap layer over the write pole; masking a portion of the first gap layer for defining a window over the write pole and at least a portion of the electric lapping guide layer; and forming a bump over the write pole in the window. A system in one embodiment includes an electric lapping guide layer; a write pole positioned to one side of the electric lapping guide layer; and a bump formed over the write pole in a window, wherein a back end of the electric lapping guide layer and a front end of the bump are about a same distance from a lapped surface of a head. Additional methods and systems are presented.
摘要:
An optical lapping guide for determining an amount of lapping performed on a row of sliders in a process for manufacturing sliders for magnetic data recording. The optical lapping guide is constructed with a front edge that is at an angle with respect to an air bearing surface plane ABS plane, such that a portion of the lapping guides is in front of the ABS and portion of the lapping guide is behind the ABS. As lapping progresses, an increasing amount of the lapping guide will be exposed at the ABS and visible for inspection. Therefore, after a lapping process has been performed, the optical lapping guide can be inspected to determine the amount of material removed by lapping. The greater the amount of the lapping guide that is exposed and visible, the greater the amount of material removed by lapping.
摘要:
A self pinned magnetoresistive sensor that has a relatively thick compressive material at either side to assist with self pinning. A shield having recessed portions at either side of the sensor area allows room for a thicker compressive layer than would otherwise be possible.
摘要:
A method for shorting, unshorting, and reshorting an electronic component such as an MR sensor provides a repeatable ESD protection scheme. A conductive line of an electrically conductive first shorting material is created between electrical leads operatively coupled to an electronic component for creating a short therebetween. The short is severed using a laser. The short is recreated by applying a second shorting material, which may or may not be the same as the first shorting material.
摘要:
A magnetic write head for use in perpendicular magnetic data recording. The write head includes a write pole and a trailing shield having a tapered surface. A return pole stitched to the trailing shield is magnetically connected with the write pole at a location away from the air bearing surface (ABS).
摘要:
A slider fabrication assembly and method for making the same are provided. A slider is formed on a substrate. A corrodible component of the slider is exposed to an environment in contact with the slider. A kerf region of the substrate is positioned adjacent to the slider. The kerf region is removable from the slider. A sacrificial anode is embedded in the kerf region and exposed to the environment. The sacrificial anode is electrically coupled to the corrodible component of the slider thereby forming an electrochemical cell. The sacrificial anode is less noble, i.e., more corrodible, than the corrodible slider component, and thus corrodes first. When the kerf region is removed, the corroded sacrificial anode is removed as well.
摘要:
A magneto-resistive read head having a “parasitic shield” provides an alternative path for currents associated with sparkovers, thus preventing such currents from damaging the read head. The parasitic shield is provided in close proximity to a conventional magnetic shield. The electrical potential of parasitic shield is held essentially equal to the electrical potential of the sensor element. If charges accumulate on the conventional shield, current will flow to the parasitic shield at a lower potential than would be required for current to flow between the conventional shield and the sensor element. Alternatively, conductive spark gap devices are electrically coupled to sensor element leads and to each magnetic shield. Each spark gap device is brought within very close proximity of the substrate to provide an alternative path for charge that builds up between the sensor element and the substrate to be discharged. The ends of the spark gaps that are brought into close proximity of the substrate are preferably configured with high electric field density inducing structures which reduce the voltage required to cause a sparkover between the spark gap device and the substrate.
摘要:
A method for providing a thin film metallization area on a substrate is disclosed comprising the steps of: depositing a Ta adhesion layer on the surface of the substrate seed layer, conducting a photo resist process on the Ta adhesion layer to define the thin film metallization area, including a remnant removal process to remove remnant photo resist process material in the thin film metallization area to the Ta adhesion layer, the Ta adhesion layer preventing the remnant removal from reaching the seed layer, conducting a Ta removal reactive-ion-etch process to remove the Ta adhesion layer in the thin film metallization area, so that the seed layer is exposed in the metallization area. A metal material may then be deposited in the metallization area.
摘要:
A magneto-resistive read head having a "parasitic shield" provides an alternative path for currents associated with sparkovers, thus preventing such currents from damaging the read head. The parasitic shield is provided in close proximity to a conventional magnetic shield. The electrical potential of parasitic shield is held essentially equal to the electrical potential of the sensor element. If charges accumulate on the conventional shield, current will flow to the parasitic shield at a lower potential than would be required for current to flow between the conventional shield and the sensor element. Alternatively, conductive spark gap devices are electrically coupled to sensor element leads and to each magnetic shield. Each spark gap device is brought within very close proximity of the substrate to provide an alternative path for charge that builds up between the sensor element and the substrate to be discharged. The ends of the spark gaps that are brought into close proximity of the substrate are preferably configured with high electric field density inducing structures which reduce the voltage required to cause a sparkover between the spark gap device and the substrate.
摘要:
A process for forming a plurality of sliders for use in thermally-assisted recording (TAR) disk drives includes a wafer-level process for forming a plurality of aperture structures, and optionally abutting optical channels, on a wafer surface prior to cutting the wafer into individual sliders. The wafer has a generally planar surface arranged into a plurality of rectangularly-shaped regions. In each rectangular region a first metal layer is deposited on the wafer surface, followed by a layer of radiation-transmissive aperture material, which is then lithographically patterned to define the width of the aperture, the aperture width being parallel to the length of the rectangularly-shaped region. A second metal layer is deposited over the patterned layer of aperture material. The resulting structure is then lithographically patterned to define an aperture structure comprising aperture material surrounded by metal and having parallel radiation entrance and exit faces orthogonal to the wafer surface.