Abstract:
Electrochemical redox supercapacitor. The supercapacitor includes two thin films of electrically conducting polymer separated by an ion-permeable membrane and including an electrolyte disposed between the two thin films. Electrical contacts are disposed on outer surfaces of the two thin films. The supercapacitor is flexible and may be rolled, folded on itself, or kept substantially flat. A suitable conducting polymer is polypyrrole. In another aspect, the invention is a method for making a redox supercapacitor.
Abstract:
Embodiments described herein generally relate to compositions including discrete nanostructures (e.g., nanostructures including a functionalized graphene layer and a core species bound to the functionalized graphene layer), and related articles and methods. A composition may have a coefficient of friction of less than or equal to 0.02. Discrete nanostructures may have a substantially non-planar configuration. A core species may reversibly covalently bind a first portion of a functionalized graphene layer to a second portion of the functionalized graphene layer. Articles, e.g., articles including a plurality of discrete nanostructures and a means for depositing the plurality of discrete nanostructures on a surface, are also provided. Methods (e.g., methods of forming a layer) are also provided, including depositing a composition onto a substrate surface and/or applying a mechanical force to the composition, e.g., such that the composition exhibits a coefficient of friction of less than or equal to 0.02.
Abstract:
Method for connecting two portions of a first electrically conducting polymer with a second polymer. The method includes disposing a solution of a second polymer in a solvent to be in contact with the two portions of the first electrically conducting polymer and allowing the solvent to evaporate leaving the second polymer joining the two portions of the first polymer. The second polymer may be doped to improve its conductivity.
Abstract:
The present invention relate to a method and corresponding apparatus for just in time mixing of a solid or powdered formulation and its subsequent delivery to a biological body. In some embodiments, a powdered formulation is maintained in a first chamber of a plurality of chambers. A plurality of electromagnetic actuators are in communication with the plurality of chambers. The actuators, when activated, generate a pressure within at least the first chamber. The pressure results in mixing of the powdered formulation and a diluent in time for delivering into the biological body.
Abstract:
An energy-storage device is formed from a first and a second yarn, each yarn including a plurality of nanowires including aluminum and/or a transition metal. An anode pad is in contact with the first yarn and a cathode pad is in contact with the second yarn. Alternatively, first and second metallic electrodes may be disposed substantially in parallel, with pluralities of nanowires including aluminum and/or a transition metal extending therefrom. In another embodiment, a supercapacitor may include a niobium yarn including a plurality of niobium nanowires. Each niobium nanowire may include at least (i) a first section comprising at least one of unoxidized niobium and niobium oxide; (ii) a second section comprises a niobium pentoxide layer; and (iii) a third section comprises a layer formed by dipping the niobium nanowire in at least one of a conductive polymer and a liquid metal.
Abstract:
A device for measuring a mechanical property of a tissue includes a probe configured to perturb the tissue with movement relative to a surface of the tissue, an actuator coupled to the probe to move the probe, a detector configured to measure a response of the tissue to the perturbation, and a controller coupled to the actuator and the detector. The controller drives the actuator using a stochastic sequence and determines the mechanical property of the tissue using the measured response received from the detector. The probe can be coupled to the tissue surface. The device can include a reference surface configured to contact the tissue surface. The probe may include a set of interchangeable heads, the set including a head for lateral movement of the probe and a head for perpendicular movement of the probe. The perturbation can include extension of the tissue with the probe or sliding the probe across the tissue surface and may also include indentation of the tissue with the probe. In some embodiments, the actuator includes a Lorentz force linear actuator. The mechanical property may be determined using non-linear stochastic system identification. The mechanical property may be indicative of, for example, tissue compliance and tissue elasticity. The device can further include a handle for manual application of the probe to the surface of the tissue and may include an accelerometer detecting an orientation of the probe. The device can be used to test skin tissue of an animal, plant tissue, such as fruit and vegetables, or any other biological tissue.
Abstract:
A method and apparatus for detecting and removing air from a syringe containing a volume of liquid and a volume of gas is described. The method includes moving a piston in the syringe to expel gas through an orifice of the syringe, sensing a movement of the piston in the syringe, and determining when the volume of gas is expelled from the syringe based on a change in the sensed movement. Moving the piston may include applying oscillating force to the piston using an electromagnetic actuator, and displacement and speed of the piston during each oscillation may be sensed. Determining when the volume of gas is expelled may be based on a change in the sensed movement of the piston during one or more oscillations of the piston or based on a comparison to a given reference value.
Abstract:
A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
Abstract:
A needle-free transdermal transport device for transferring a substance across a surface of a biological body includes a reservoir for storing the substance, a nozzle in fluid communication with the reservoir and a controllable electromagnetic actuator in communication with the reservoir. The actuator, referred to as a Lorentz force actuator, includes a stationary magnet assembly and a moving coil assembly. The coil assembly moves a piston having an end portion positioned within the reservoir. The actuator receives an electrical input and generates in response a corresponding force acting on the piston and causing a needle-free transfer of the substance between the reservoir and the biological body. The magnitude, direction and duration of the force are dynamically controlled (e.g., servo-controlled) by the electrical input and can be altered during the course of an actuation cycle. Beneficially, the actuator can be moved in different directions according to the electrical input.
Abstract:
A needle-free transdermal transport device for transferring a substance across a surface of a biological body includes a reservoir for storing the substance, a nozzle in fluid communication with the reservoir and a controllable electromagnetic actuator in communication with the reservoir. The actuator, referred to as a Lorentz force actuator, includes a stationary magnet assembly and a moving coil assembly. The coil assembly moves a piston having an end portion positioned within the reservoir. The actuator receives an electrical input and generates in response a corresponding force acting on the piston and causing a needle-free transfer of the substance between the reservoir and the biological body. The magnitude, direction and duration of the force are dynamically controlled (e.g., servo-controlled) by the electrical input and can be altered during the course of an actuation cycle. Beneficially, the actuator can be moved in different directions according to the electrical input.