摘要:
A combination EEPROM and Flash memory is described containing cells in which the stacked gate transistor of the Flash cell is used in conjunction with a select transistor to form an EEPROM cell. The select transistor is made sufficiently small so as to allow the EEPROM cells to accommodate the bit line pitch of the Flash cell, which facilitates combining the two memories into memory banks containing both cells. The EEPROM cells are erased by byte while the Flash cells erased by block. The small select transistor has a small channel length and width, which is compensated by increasing gate voltages on the select transistor and pre-charge bitline during CHE program operation.
摘要:
A novel FLASH-based EEPROM cell, decoder, and layout scheme are disclosed to eliminate the area-consuming divided triple-well in cell array and allows byte-erase and byte-program for high P/E cycles. Furthermore, the process-compatible FLASH cell for EEPROM part can be integrated with FLASH and ROM parts so that a superior combo, monolithic, nonvolatile memory is achieved. Unlike all previous arts, the novel combo nonvolatile memory of the present invention of ROM, EEPROM and FLASH or combination of any two is made of one unified, fully compatible, highly-scalable BN+ cell and unified process. In addition, its cell operation schemes have zero array overhead and zero disturbance during P/E operations. The novel combo nonvolatile memory is designed to meet the need in those markets requiring flexible write size in units of bytes, pages and blocks at a lower cost.
摘要:
A nonvolatile memory array has a single transistor flash memory cell and a two transistor EEPROM memory cell which maybe integrated on the same substrate. The nonvolatile memory cell has a floating gate with a low coupling coefficient to permit a smaller memory cell. The floating gate placed over a tunneling insulation layer, the floating gate is aligned with edges of the source region and the drain region and having a width defined by a width of the edges of the source the drain. The floating gate and control gate have a relatively small coupling ratio of less than 50% to allow scaling of the nonvolatile memory cells. The nonvolatile memory cells are programmed with channel hot electron programming and erased with Fowler Nordheim tunneling at relatively high voltages.
摘要:
A novel FLASH-based EEPROM cell, decoder, and layout scheme are disclosed to eliminate the area-consuming divided triple-well in cell array and allows byte-erase and byte-program for high P/E cycles. Furthermore, the process-compatible FLASH cell for EEPROM part can be integrated with FLASH and ROM parts so that a superior combo, monolithic, nonvolatile memory is achieved. Unlike all previous arts, the novel combo nonvolatile memory of the present invention of ROM, EEPROM and FLASH or combination of any two is made of one unified, fully compatible, highly-scalable BN+ cell and unified process. In addition, its cell operation schemes have zero array overhead and zero disturbance during P/E operations. The novel combo nonvolatile memory is designed to meet the need in those markets requiring flexible write size in units of bytes, pages and blocks at a lower cost.
摘要:
In the present invention a method is shown that uses three concurrent word line voltages in memory cell operations of an a NOR type EEPROM flash memory array. A first concurrent word line voltage controls the operation on a selected word line within a selected memory block. The second concurrent word line voltage inhibits cells on non selected word lines in the selected memory block, and the third concurrent word line voltage inhibits non-selected cells in non-selected blocks from disturb conditions. In addition the three consecutive word line voltages allow a block to be erased, pages within the block to be verified as erased, and pages within the block to be inhibited from further erasure. The three consecutive voltages also allow for the detection of over erasure of cells, correction on a page basis, and verification that the threshold voltage of the corrected cells are above an over erase value but below an erased value. The methods described herein produce a cell threshold voltage that has a narrow voltage distribution.
摘要:
In the present invention is disclosed a flash memory for simultaneous read and write operations. The memory is partitioned into a plurality of sectors each of which have a sector decoder. The sector decoder connects a plurality of main bit lines to a plurality of sub bit lines contained within each memory sector A 21 decoder is used to demonstrate the invention although other decoders including a 2M decoder and a hierarchical type decoder can be used. The memory array can be configured from a variety of architectures, including NOR, OR, NAND, AND, Dual-String and DINOR. The memory cells can be formed from a variety of array structures including ETOX, FLOTOX, EPROM, EEPROM, Split-Gate, and PMOS.
摘要:
In the present invention an EEPROM flash memory is operated using the I/O pins of an EPROM. A novel circuit is used that allows a plurality of voltages to be applied at different times to a single pin designated as CEB (chip enable bar) that permits reading and writing of the flash memory chip. The plurality of voltages can range from a positive voltage, to a ground voltage and to a negative voltage. When a positive voltage like Vdd is applied to the the CEB pin the chip is disabled and entered into a standby mode. When a ground voltage is applied to the CEB pin, the flash memory chip is enabled and a read operation can be performed. When a high negative voltage is applied to the CEB pin, the circuit of the present invention produces an internal high negative voltage to be used for a write operation.
摘要:
In the present invention a flash memory configuration is disclosed that eliminates the need for one of two pump circuits that are commonly required to support an erase function of memory cells on a flash memory chip. The flash memory cells are placed into a triple well structure with a P-well contained within a deep N-well that resides on a P-substrate. The bias voltages for erase of the flash memory cells are chosen so as to require only one voltage pump circuit to be included in the flash memory chip. The chip bias, V.sub.DD, is used for the source of the memory cells and a negative gate voltage is raised in magnitude to maintain the efficiency of the erase operation. The P-well is biased with a negative voltage that is sufficient to prevent the high negative voltage connected to the gate from causing breakdown in word line decoder circuits. The deep N-well and the P-substrate are biased such as to back bias the P/N junctions between the triple well structure.
摘要:
A two-phase high voltage generator circuit is electronically reconfigurable to output positive (V.sub.Pp) or negative (V.sub.Pn) high voltage, depending upon whether positive or negative mode operation is selected. The circuit includes a plurality of series-connected charge multiplier stages that each comprises a MOS transistor and a charging capacitor. Collectively the stages define an anode node and a cathode node. One of two non-overlapping phase signals is coupled to the free end of each charging capacitor such that adjacent charging capacitors are driven by different phases. First and second two-way multiplexers (MUX1, MUX2) control voltages presented to the anode and cathode nodes, to determine whether circuit operation is positive or negative mode. The MOS devices may be PMOS or NMOS, and preferably Vt-cancellation is provided for each charging stage. A precharge/discharge circuit preferably is coupled to each voltage node including the load capacitor. Further, substrate-well protection is provided such that the MOS devices are less prone to exhibit voltage breakdown or substrate to source/drain current flow.
摘要:
A flash memory with a high speed erasing structure includes a bank of flash transistors having a plurality of wordlines, a plurality of bitlines and a sourceline. A wordline decoder is coupled to the wordlines and configured to selectively apply voltages to the wordlines to perform procedures on the flash transistors, where the procedures include a read procedure, an erase procedure and a program procedure. During the erase procedure, the wordline decoder is configured to apply a first increasingly negative voltage in a first voltage range to at least one selected wordline until a first threshold voltage is met, then to apply a second increasingly negative voltage in a second voltage range to the selected wordline and to simultaneously apply a third negative voltage in a third voltage range to at least one deselected wordline. Another embodiment of the invention increases the selected sourceline voltage to achieve a high voltage differential between the gate and source of flash transistors selected to be erased. In another second embodiment, the wordline decoder is constructed from thin oxide and thick oxide semiconductor devices. Thick oxide devices are used in the wordline driver, which allows an increased voltage differential to be applied to the wordlines without damaging the wordline driver. Advantages of the invention include a fast erasing procedure due to the increased voltage differential applied between the gate and source of flash transistors selected to be erased.