摘要:
Methods for fabricating a semiconductor FIN structure with smooth sidewalls and rounded top corners and edges is disclosed. A method includes forming a plurality of semiconductor FIN structures. A sacrificial oxide layer is formed on the top surface and the sidewall surfaces of the plurality of semiconductor FIN structures for rounding the corners and edges between the top surfaces and the sidewall surfaces of the plurality of semiconductor FIN structures. The sacrificial oxide layer is removed with a high selectivity oxide etchant. The plurality of semiconductor FIN structures are annealed in a hydrogen environment. A tunnel oxide is formed over the plurality of semiconductor FIN structures.
摘要:
Charge storage stacks containing hetero-structure variable silicon richness nitride for memory cells and methods for making the charge storage stacks are provided. The charge storage stack can contain a first insulating layer on a semiconductor substrate; n charge storage layers comprising silicon-rich silicon nitride on the first insulating layer, wherein numbers of the charge storage layers increase from the bottom to the top and a k-value of an n-1th charge storage layer is higher than a k-value of an nth charge storage layer; n-1 dielectric layers comprising substantially stoichiometric silicon nitride between each of the n charge storage layers; and a second insulating layer on the nth charge storage layers.
摘要:
Post-laser annealing dopant deactivation is minimized by performing certain silicide formation process steps prior to laser annealing. A base metal layer of nickel is deposited on the source-drain regions and the gate electrode, followed by deposition of an overlying layer of a metal having a higher melting temperature than nickel. Thereafter, a rapid thermal process is performed to heat the substrate sufficiently to form metal silicide contacts at the top surfaces of the source-drain regions and of the gate electrode. The method further includes removing the remainder of the metal-containing layer and then depositing an optical absorber layer over the substrate prior to laser annealing.
摘要:
The present invention provides a semiconductor device capable of substantially retarding boron penetration within the semiconductor device and a method of manufacture therefor. In the present invention the semiconductor device includes a gate dielectric located over a substrate of a semiconductor wafer, wherein the gate dielectric includes a nitrided layer and a dielectric layer. The present invention further includes a nitrided transition region located between the dielectric layer and the nitrided layer and a gate located over the gate dielectric.
摘要:
In one embodiment, the invention generally provides a method for annealing a doped layer on a substrate including depositing a polycrystalline layer to a gate oxide layer and implanting the polycrystalline layer with a dopant to form a doped polycrystalline layer. The method further includes exposing the doped polycrystalline layer to a rapid thermal anneal to readily distribute the dopant throughout the polycrystalline layer. Subsequently, the method includes exposing the doped polycrystalline layer to a laser anneal to activate the dopant in an upper portion of the polycrystalline layer.
摘要:
In one embodiment, a method for forming a morphologically stable dielectric material is provided which includes exposing a substrate to a hafnium precursor, a silicon precursor and an oxidizing gas to form hafnium silicate material during a chemical vapor deposition (CVD) process and subsequently and optionally exposing the substrate to a post deposition anneal, a nitridation process and a thermal annealing process. In some examples, the hafnium and silicon precursors used during a metal-organic CVD (MOCVD) process are alkylamino compounds, such as tetrakis(diethylamino)hafnium (TDEAH) and tris(dimethylamino)silane (Tris-DMAS). In another embodiment, other metal precursors may be used to form a variety of metal silicates containing tantalum, titanium, aluminum, zirconium, lanthanum or combinations thereof.
摘要:
In one embodiment, the invention generally provides a method for annealing a doped layer on a substrate including depositing a polycrystalline layer to a gate oxide layer and implanting the polycrystalline layer with a dopant to form a doped polycrystalline layer. The method further includes exposing the doped polycrystalline layer to a rapid thermal anneal to readily distribute the dopant throughout the polycrystalline layer. Subsequently, the method includes exposing the doped polycrystalline layer to a laser anneal to activate the dopant in an upper portion of the polycrystalline layer.
摘要:
The present invention provides a method that includes defining a dummy gate structure comprising a spin on glass on a semiconductor substrate, forming a dielectric layer over the dummy gate structure, removing the dummy gate structure to form a gate opening within the dielectric layer, and forming a gate material comprising a metal within the gate opening.
摘要:
A trench isolation structure is fabricated using high pressure and low temperature. A substrate is provided within which a trench is formed. The trench walls are annealed in nitrogen at a pressure above atmospheric pressure to remove silicon damage caused by plasma etching. The exposed side walls of the trench are oxidized at a pressure above atmospheric pressure to form an oxidized layer. The trench is filled with an oxide. Optionally, re-oxidation densification may be performed at a pressure above atmospheric pressure and a temperature in the range of about 600° C. to about 800° C.