摘要:
Electronic devices and methods for forming electronic devices that allow for a reduction in device dimensions while also maintaining or reducing leakage current for non-volatile memory devices are provided. In one embodiment, a method of fabricating a non-volatile memory device is provided. The method comprises depositing a floating gate polysilicon layer on a substrate, forming a silicon oxide layer on the floating gate polysilicon layer, depositing a first silicon oxynitride layer on the silicon oxide layer, depositing a high-k dielectric material layer on the first silicon oxynitride layer, depositing a second silicon oxynitride on the high-k dielectric material, and forming a control gate polysilicon layer on the second silicon oxynitride layer. In one embodiment, the high-k dielectric material layer comprises hafnium silicon oxynitride.
摘要:
Methods for forming a integrated gate dielectric layer on a substrate are provided. In one embodiment, the method includes forming a silicon oxide layer on a substrate, plasma treating the silicon oxide layer, depositing a silicon nitride layer on the silicon oxide layer by an ALD process, and thermal annealing the substrate. In another embodiment, the method includes precleaning a substrate, forming a silicon oxide layer on the substrate, plasma treating the silicon oxide layer, depositing a silicon nitride layer on the silicon oxide layer by an ALD process, and thermal annealing the substrate, wherein the formed silicon oxide layer and the silicon nitride layer has a total thickness less than 30 Å utilized as a gate dielectric layer in a gate structure.
摘要:
Embodiments of the present invention relate to a surface preparation treatment for the formation of thin films of high k dielectric materials over substrates. One embodiment of a method of forming a high k dielectric layer over a substrate includes pre-cleaning a surface of a substrate to remove native oxides, pre-treating the surface of the substrate with a hydroxylating agent, and forming a high k dielectric layer over the surface of the substrate. One embodiment of a method of forming a hafnium containing layer over a substrate includes introducing an acid solution to a surface of a substrate, introducing a hydrogen containing gas and an oxygen containing gas to the surface of the substrate, and forming a hafnium containing layer over the substrate.
摘要:
In one embodiment, a method for forming a morphologically stable dielectric material is provided which includes exposing a substrate to a hafnium precursor, a silicon precursor and an oxidizing gas to form hafnium silicate material during a chemical vapor deposition (CVD) process and subsequently and optionally exposing the substrate to a post deposition anneal, a nitridation process and a thermal annealing process. In some examples, the hafnium and silicon precursors used during a metal-organic CVD (MOCVD) process are alkylamino compounds, such as tetrakis(diethylamino)hafnium (TDEAH) and tris(dimethylamino)silane (Tris-DMAS). In another embodiment, other metal precursors may be used to form a variety of metal silicates containing tantalum, titanium, aluminum, zirconium, lanthanum or combinations thereof.
摘要:
In one embodiment, a method for forming a dielectric stack on a substrate is provided which includes depositing a first layer of a dielectric material on a substrate surface, exposing the first layer to a nitridation process, depositing a second layer of the dielectric material on the first layer, exposing the second layer to the nitridation process, and exposing the substrate to an anneal process. In another embodiment, a method for forming a dielectric material on a substrate is provided which includes depositing a metal oxide layer substantially free of silicon on a substrate surface, exposing the metal oxide layer to a nitridation process, and exposing the substrate to an anneal process.
摘要:
Embodiments of the invention provide apparatuses and methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic. In an alternative embodiment, a deposition system contains a catalytic water vapor generator connected to an ALD chamber.
摘要:
The present invention generally is a method for forming a high-k dielectric layer, comprising depositing a hafnium compound by atomic layer deposition to a substrate, comprising, delivering a hafnium precursor to a surface of the substrate, reacting the hafnium precursor and forming a hafnium containing layer to the surface, delivering a nitrogen precursor to the hafnium containing layer, forming at least one hafnium nitrogen bond and depositing the hafnium compound to the surface.
摘要:
Methods for forming a high-k dielectric layer that may be utilized to form a metal gate structure in TANOS charge trap flash memories. In one embodiment, the method may include providing a substrate into a chamber, supplying a gas mixture containing an oxygen containing gas and aluminum containing compound into the chamber, wherein the aluminum containing compound has a formula selected from a group consisting of RxAly(OR′)x and Al(NRR′)3, heating the substrate, and depositing an aluminum oxide layer having a dielectric constant greater than 8 on the heated substrate by a chemical vapor deposition process.
摘要:
Embodiments of the invention provide methods for depositing materials on substrates during vapor deposition processes, such as atomic layer deposition (ALD). In one embodiment, a chamber contains a substrate support with a receiving surface and a chamber lid containing an expanding channel formed within a thermally insulating material. The chamber further includes at least one conduit coupled to a gas inlet within the expanding channel and positioned to provide a gas flow through the expanding channel in a circular direction, such as a vortex, a helix, a spiral, or derivatives thereof. The expanding channel may be formed directly within the chamber lid or formed within a funnel liner attached thereon. The chamber may contain a retaining ring, an upper process liner, a lower process liner or a slip valve liner. Liners usually have a polished surface finish and contain a thermally insulating material such as fused quartz or ceramic. In an alternative embodiment, a deposition system contains a catalytic water vapor generator connected to an ALD chamber.
摘要:
The embodiments of the invention describe a process chamber, such as an ALD chamber, that has gas delivery conduits with gradually increasing diameters to reduce Joule-Thompson effect during gas delivery, a ring-shaped gas liner leveled with the substrate support to sustain gas temperature and to reduce gas flow to the substrate support backside, and a gas reservoir to allow controlled delivery of process gas. The gas conduits with gradually increasing diameters, the ring-shaped gas liner, and the gas reservoir help keep the gas temperature stable and reduce the creation of particles.