Abstract:
This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for high efficiency (HE) beacons. HE supported access points (APs) and stations (STAs) may operate on resource deployments used for Wi-Fi technology and without support for legacy devices, also referred to as a greenfield deployment. An AP may identify updated capability information and transmit a HE physical layer convergence protocol (PLCP) protocol data unit (PPDU) including a beacon frame. A STA may receive, from the AP, the HE or EHT PPDU and identify an indication of change to a content or format of the beacon frame relative to a reference beacon frame. Based on the identified indication, the STA may then determine an updated content or format for the beacon frame and process the beacon frame or skip processing for one or more portions of the beacon frame.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, using a modulation and coding scheme (MCS) value as a factor for guidance. According to one aspect, the device may be in a reception mode. While in a first power mode, the device may receive control information for incoming data that is being transmitted via a transmission frame. The control information may be located in a first portion of the frame with the data following in a second portion of the frame. The control information may include or otherwise indicate an MCS value corresponding to the MCS applied to the incoming data. Based on the MCS value, the device may be adaptively switched to a second power mode for receiving the incoming data.
Abstract:
Disclosed are systems, methods and devices for obtaining round trip time measurements for use in location based services. In particular implementations, a fine timing measurement request message wirelessly transmitted by a first transceiver device to a second transceiver device may permit additional processing features in computing or applying a signal round trip time measurement. Such a signal round trip time measurement may be used in positioning operations.
Abstract:
Methods, devices, and apparatuses are described for wireless communications using a multidimensional algorithm for roaming. In one aspect, an initial set of candidate access points (APs) is produced by a station using a roaming scan. The initial set may be identified based at least in part on an initial metric (e.g., beacon signal strength). A probe signal may be transmitted by the station to at least one of the candidate APs in the initial set and information may be received in response to the probe signals. The station may then identify a reduced set from the initial set based at least in part on the received information, where the reduced set is used to select a target AP. At least one additional metric may be identified and the probe signal may be configured to obtain information corresponding to the additional metrics. This information may be used by the station to select the candidate APs in the reduced set.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, and implementing lower power modes with various modes of the device. According to one aspect, the mode of the device may be a beacon monitoring mode or a delivery traffic indication message (DTIM) mode. In such a mode, the device may receive a portion of a beacon in a first power mode. The device may transition to a second, different (e.g., higher) power mode using information contained in the received portion of the beacon as guidance.
Abstract:
Methods, systems, and devices are described for power conservation in a wireless communications system. In embodiments, power conservation may be achieved by adaptively controlling power modes of a wireless communication device, using a modulation and coding scheme (MCS) value as a factor for guidance. According to one aspect, the device may be in a reception mode. While in a first power mode, the device may receive control information for incoming data that is being transmitted via a transmission frame. The control information may be located in a first portion of the frame with the data following in a second portion of the frame. The control information may include or otherwise indicate an MCS value corresponding to the MCS applied to the incoming data. Based on the MCS value, the device may be adaptively switched to a second power mode for receiving the incoming data.
Abstract:
A system and method are disclosed for performing ranging operations between two wireless devices without employing cyclic shift diversity (CSD) compensation techniques. For some embodiments, a first wireless device sends a negotiation request frame requesting the second wireless device to respond to subsequently received frames of a specified type using a selected one of the transmit chains in the second wireless device. Thereafter, the first wireless device sends a data frame to the second wireless device to initiate a ranging operation. The second wireless device sends a response frame of the specified type to the first wireless device using the selected one of the transmit chains.
Abstract:
Methods and apparatuses are described in which dynamic voltage and frequency scaling may be used to save power when processing packets in a wireless communications device. In some cases, inframe detection may allow the device to determine whether to transition from a first (e.g., lower) voltage level to a second (e.g., higher) voltage level to process one or more packets of a received frame. For some packet types the first voltage level may be maintained. In other cases, the device may determine a bandwidth to use from among multiple bandwidths supported by the device. The bandwidth may be determined based on channel conditions. A voltage level may be identified that corresponds to the determined bandwidth and a processing voltage may be scaled to the identified voltage level. The device may be configured to operate in wireless local area network (WLAN) and/or in a cellular network (e.g., LTE).
Abstract:
Certain aspects of the present disclosure provide techniques that may allow a device participating in a setup procedure to efficiently propose a range of values for a negotiated parameter. The techniques may reduce setup time, for example, allowing a responder to accept a value within the proposed range which may eliminate overhead associated with some of the back and forth message exchange of typical negotiations.
Abstract:
This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for high efficiency (HE) beacons. HE supported access points (APs) and stations (STAs) may operate on resource deployments used for Wi-Fi technology and without support for legacy devices, also referred to as a greenfield deployment. An AP may identify updated capability information and transmit a HE physical layer convergence protocol (PLCP) protocol data unit (PPDU) including a beacon frame. A STA may receive, from the AP, the HE or EHT PPDU and identify an indication of change to a content or format of the beacon frame relative to a reference beacon frame. Based on the identified indication, the STA may then determine an updated content or format for the beacon frame and process the beacon frame or skip processing for one or more portions of the beacon frame.