Abstract:
Various additional and alternative aspects are described herein. In some aspects, the present disclosure provides a method of operating a system-on-chip (SoC). The method includes selecting a CPU core of a plurality of CPU cores of the SoC to boot the SoC based on information indicative of the quality of the plurality of CPU cores stored on the SoC. The method includes running boot code on the selected CPU.
Abstract:
System and methods for booting a system-on-chip (SOC) in an enhanced memory mode are described herein. In one aspect, an enhanced memory mode indicator may be read to create a trusted channel to a non-volatile random-access memory (NVRAM). The NVRAM may be logically connected to the SOC. In an aspect, the NVRAM may be secured prior to the creation of the trusted channel. Once the secure channel to NVRAM has been created, the SOC may operate in an enhanced memory mode. Prior to the SOC powering down, the system may store an indicator operable to enable a subsequent boot of the SOC in the power saving mode. The SOC may be operable to switch between the power saving mode and a normal mode depending on the operational requirements of the portable computing device in which the SOC is implemented.
Abstract:
Systems and methods are disclosed for error correction control (ECC) for a refreshable memory device coupled to a system on a chip SoC. The memory device including a parity region and a user data region. A method includes determining with the SoC a first refresh rate for the user data region of the memory device and a second refresh rate for the parity region of the memory device, where the second refresh rate is different than the first refresh rate. Parity data is generated for a write operation of a user payload data (UPD) to the user data region of the memory device. The user data region of the memory device is refreshed at the first refresh rate and the parity region is refreshed at the second refresh rate.
Abstract:
A method of triggering a desired operating mode in a universal serial bus (USB)-compatible client device is provided. A USB-compatible client device detects that it has been coupled to a USB-compatible host device via a USB bus. The USB-compatible client device attempts to pull a data line of the USB bus high. The USB-compatible client device then ascertains that the data line remains pulled low, thereby indicating that the USB-compatible client device should enter a first mode of operation. The USB-compatible client device operates according to the first mode of operation.
Abstract:
Systems and methods for improved flash memory performance in a portable computing device are presented. In a method, a value N corresponding to an amount of prefetch data to be retrieved from the flash memory is determined. An access request for a flash memory is received at a cache controller in communication with a cache memory. A determination is made whether the access request for the flash memory corresponds to a portion of data stored in the cache memory. If the access request for the flash memory corresponds to the portion of data, the portion of data is returned in response to the access request. Otherwise, an N amount of prefetch data is retrieved from the flash memory and stored in the cache memory. The value N is incremented based on a cache hit percentage for the cache memory.
Abstract:
Aspects include computing devices, systems, and methods for implementing a cache maintenance or status operation for a component cache of a system cache. A computing device may generate a component cache configuration table, assign at least one component cache indicator of a component cache to a master of the component cache, and map at least one control register to the component cache indicator by a centralized control entity. The computing device may store the component cache indicator such that the component cache indicator is accessible by the master of the component cache for discovering a virtualized view of the system cache and issuing a cache maintenance or status command for the component cache bypassing the centralized control entity. The computing device may receive the cache maintenance or status command by a control register associated with a cache maintenance or status command and the component cache bypassing the centralized control entity.
Abstract:
Systems, methods, and computer programs are disclosed for kernel masking dynamic random access memory (DRAM) defects. One such method comprises: detecting and correcting a single-bit error associated with a physical address in a dynamic random access memory (DRAM); receiving error data associated with the physical address from the DRAM; storing the received error data in a failed address table located in a non-volatile memory; and retiring a kernel page corresponding to the physical address if a number of errors associated with the physical address exceeds an error count threshold.
Abstract:
Efficient techniques using a multi-port shared non-volatile memory are described that reduce latency in memory accesses from dedicated function specific processors, such as a modem control processor. The modem processor preempts a host processor that is accessing data from a multi-port shared non-volatile memory flash device allowing the modem processor to quickly access data in the flash device. The preemption process uses a doorbell interrupt initiated by a processor that seeks access and interrupts the processor being preempted. After preemption, the host processor may resume or restart the data access. Access control by the processors utilizes a hardware semaphore atomic control mechanism. Power control of the shared non-volatile memory modules includes at least one inactivity timer to indicate when a supply voltage to the shared non-volatile memory modules can be safely reduced or turned off. Power may be restarted by any of the processors sharing the memory, allowing fast access to the data.
Abstract:
Systems, methods, and computer programs are disclosed for providing power-efficient file system operation to a non-volatile block memory. An exemplary embodiment of a system comprises a non-volatile block memory having a file system, a dynamic random access memory (DRAM), and a system on chip (SoC). The SoC comprises a central processing unit (CPU), one or more non-core processors, a DRAM controller, a data interface coupled to an off-chip processor, and a multi-host storage controller. The CPU allocates a storage buffer in the non-volatile block memory. The multi-host storage controller comprises a virtualized client interface for providing the non-core and off-chip processors with direct read/write file system access using the allocated storage buffer while the CPU and the DRAM are in a low power state.
Abstract:
Systems and methods are disclosed for providing secure access to a non-volatile random access memory. One such method comprises sending an unlock password to a non-volatile random access memory (NVRAM) in response to a trusted boot program executing on a system on chip (SoC). The NVRAM compares the unlock password to a pass gate value provisioned in the NVRAM. If the unlock password matches the pass gate value, a pass gate is unlocked to enable the SoC to access a non-volatile cell array in the NVRAM.