Abstract:
A gated voltage controlled oscillator has four identically structured delay cells, each of the delay cells having the same output load by connecting to the same number of inputs of other ones of the delay cells. Optionally a four phase sampling clock selects from the delay cell output and samples, at a four phase sampler, an input signal. Optionally an edge detector synchronizes the phase of the gated voltage controlled oscillator to coincide with NRZ bits. Optionally a variable sampling rate selects different phases from the delay cells to selectively sample NRZ bits at a lower rate. Optionally, a pulse width modulation (PWM) mode synchronizes a phase of the sampling clock to sample PWM symbols and recover encoded bits.
Abstract:
A common mode voltage level shifting circuit including: input nodes configured to receive a differential signal with a first common mode voltage, a pair of shunt capacitors coupled between the input nodes and a corresponding pair of output nodes, a threshold voltage circuit, including the output nodes, coupled to the differential signal though the shunt capacitors, the threshold voltage circuit configured to provide a second common mode voltage for the differential signal at the output nodes, and current sources that are controlled according to a level of the first common mode voltage, the current sources coupled to the output nodes to effect the second common mode voltage.
Abstract:
Systems and methods for decoding pulse-width modulated (PWM) data are disclosed. An example decoder filters a data input signal with a one-sided pulse filter. The one-sided pulse filter suppresses short pulses on the data input signal and passes long pulses. The example decoder latch the filtered data signal at the end of each bit time of the data input signal. The duration of pulses that are suppressed by the one-sided pulse filter can be calibrated to compensate for circuit variations and to allow the decoder to operate at various data rates. The decoder can be implemented in a small integrated circuit area and can be power efficient.
Abstract:
A driver circuit for transmitting serial data on a communication link combines voltage-mode and current-mode drivers. The driver circuit uses a voltage-mode driver as the main output driver. One or more auxiliary current-mode drivers are connected in parallel with the voltage-mode driver to adjust the output signal by injecting currents into the outputs. The voltage-mode driver supplies most of the output drive. Thus, the output driver circuit can provide the power efficiency benefits associated with voltage-mode drivers. The current-mode drivers can provide, for example, pre-emphasis, level adjustment, skew compensation, and other modifications of the output signals. Thus, the driver circuit can also provide the signal adjustment abilities associated with current-mode drivers.
Abstract:
A receiver is provided that includes a time-to-digital converter for converting a phase difference between a clock signal and a received data signal into a phase-difference digital code. The receiver also includes a logic circuit that controls a programmable delay line to delay the clock signal into a delayed clock signal by a delay that is responsive to a difference between the phase-difference code and a unit interval for the clock signal. The delayed clock signal clocks a flip-flop to register the received data signal.
Abstract:
Systems and methods for adjusting a phase step size of a clock data recover (CDR) circuit are described according to aspects of the present disclosure. In certain aspects, a method for adjusting a phase step size of a CDR circuit includes sensing a frequency offset of the CDR circuit, and adjusting the phase step size of the CDR circuit based on the sensed frequency offset. The frequency offset may be sensed by sensing a signal level on an integration path of a loop filter of the CDR circuit. The phase step size of the CDR circuit may be adjusted by switching the CDR circuit between a first phase step size and a second phase step size using a modulator (e.g., a sigma-delta modulator).
Abstract:
In one embodiment, a receiver comprises a latch configured to receive a data signal and to latch symbols of the received data signal, and a decision feedback equalizer. The decision feedback equalizer comprises a first feedback capacitor having first and second terminals, the first terminal being coupled to a first internal node of the latch. The decision feedback equalizer also comprises a first plurality of switches configured to alternatively couple the second terminal of the first feedback capacitor to a first feedback signal and a ground, the first feedback signal having a first voltage that is a function of a bit decision corresponding to a first previous symbol in the data signal preceding a current symbol in the data signal.
Abstract:
Aspects disclosed in the detailed description include communicating low-speed and high-speed parallel bit streams over a high-speed serial bus. In one aspect, a data transmitting circuit converts a low-speed parallel bit stream into a high-speed parallel bit stream and then serializes the converted high-speed parallel bit stream based on a high-speed reference frequency. In another aspect, a data receiving circuit recovers the low-speed parallel bit stream from the high-speed parallel bit stream if the low-speed parallel bit stream is determined to exist in the high-speed parallel bit stream. By serializing and deserializing the low-speed parallel bit stream based on the high-speed reference frequency, it is possible to communicate the high-speed parallel bit stream and the low-speed parallel bit stream over the high-speed serial bus without requiring additional serializers and deserializers, thus reducing component costs and implementation complexities in both the transmitting circuit and the receiving circuit.
Abstract:
In one embodiment, a receiver comprises a latch configured to receive a data signal and to latch symbols of the received data signal, and a decision feedback equalizer. The decision feedback equalizer comprises a first feedback capacitor having first and second terminals, the first terminal being coupled to a first internal node of the latch. The decision feedback equalizer also comprises a first plurality of switches configured to alternatively couple the second terminal of the first feedback capacitor to a first feedback signal and a ground, the first feedback signal having a first voltage that is a function of a bit decision corresponding to a first previous symbol in the data signal preceding a current symbol in the data signal.
Abstract:
In one embodiment, a receiver comprises a differential common-gate amplifier having a differential input and a differential output, wherein the differential input comprises a first input and a second input, and the differential common-gate amplifier is configured to amplify an input differential signal at the differential input into an amplified differential signal at the differential output. The receiver also comprises a common-mode voltage sensor configured to sense a common-mode voltage of the input differential signal, a replica circuit configured to generate a replica voltage that tracks a direct current (DC) voltage at at least one of the first and second inputs, and a comparator configured to compare the sensed common-mode voltage with the replica voltage, and to adjust a first bias voltage input to the differential common-gate amplifier based on the comparison, wherein the DC voltage depends on the first bias voltage.