Abstract:
A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
Abstract:
This disclosure provides a clock recovery circuit for a multi-lane communication system. Local clocks are recovered from the input signals using respective local CDR circuits, and associated CDR error signals are aggregated or otherwise combined. A global recovered clock for shared use by the local CDR circuits is generated at a controllable oscillation frequency as a function of a combination of the error signals from the plurality of receivers. A voltage- or current-controlled delay line can also be used to phase adjust the global recovered clock to mitigate band-limited, lane-correlated, high frequency jitter.
Abstract:
A method is disclosed. The method includes sampling a data signal having a voltage value at an expected edge time of the data signal. A first alpha value is generated, and a second alpha value generated in dependence upon the voltage value. The data signal is adjusted by the first alpha value to derive a first adjusted signal. The data signal is adjusted by the second alpha value to derive a second adjusted signal. The first adjusted signal is sampled to output a first data value while the second adjusted signal is sampled to output a second data value. A selection is made between the first data value and the second data value as a function of a prior received data value to determine a received data value.
Abstract:
A low-power, high-performance source-synchronous chip interface which provides rapid turn-on and facilitates high signaling rates between a transmitter and a receiver located on different chips is described in various embodiments. Some embodiments of the chip interface include, among others: a segmented “fast turn-on” bias circuit to reduce power supply ringing during the rapid power-on process; current mode logic clock buffers in a clock path of the chip interface to further reduce the effect of power supply ringing; a multiplying injection-locked oscillator (MILO) clock generator to generate higher frequency clock signals from a reference clock; a digitally controlled delay line which can be inserted in the clock path to mitigate deterministic jitter caused by the MILO clock generator; and circuits for periodically re-evaluating whether it is safe to retime transmit data signals in the reference clock domain directly with the faster clock signals.
Abstract:
A receiver is equipped with an adaptive phase-offset controller and associated timing-calibration circuitry that together shift the timing for a data sampler and a digital equalizer. The sample and equalizer timing is shifted to a position with less residual inter-symbol interference (ISI) energy relative to the current symbol. The shifted position may be calculated using a measure of signal quality, such as a receiver bit-error rate or a comparison of filter-tap values, to optimize the timing of data recovery.
Abstract:
This disclosure provides a clock recovery circuit for a multi-lane communication system. Local clocks are recovered from the input signals using respective local CDR circuits, and associated CDR error signals are aggregated or otherwise combined. A global recovered clock for shared use by the local CDR circuits is generated at a controllable oscillation frequency as a function of a combination of the error signals from the plurality of receivers. A voltage- or current-controlled delay line can also be used to phase adjust the global recovered clock to mitigate band-limited, lane-correlated, high frequency jitter.
Abstract:
A receiver is equipped with an adaptive phase-offset controller and associated timing-calibration circuitry that together shift the timing for a data sampler and a digital equalizer. The sample and equalizer timing is shifted to a position with less residual inter-symbol interference (ISI) energy relative to the current symbol. The shifted position may be calculated using a measure of signal quality, such as a receiver bit-error rate or a comparison of filter-tap values, to optimize the timing of data recovery.
Abstract:
A receiver is equipped with an adaptive phase-offset controller and associated timing-calibration circuitry that together shift the timing for a data sampler and a digital equalizer. The sample and equalizer timing is shifted to a position with less residual inter-symbol interference (ISI) energy relative to the current symbol. The shifted position may be calculated using a measure of signal quality, such as a receiver bit-error rate or a comparison of filter-tap values, to optimize the timing of data recovery.
Abstract:
A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.
Abstract:
A receiver integrated circuit is disclosed that includes a filter and a linear equalization circuit. The filter has an input to receive a signal symbols a main tap and a pre-cursor tap to reduces a pre-cursor ISI acting on the data symbols. The linear equalization circuit couples to the output and cooperates with the filter to further reduce ISI.