Abstract:
A method of providing a thermally conductive connection between spaced surfaces includes (a) mixing a thermally conductive filler containing a liquid metal into an unhardened matrix material, and (b) contacting the unhardened matrix material and randomly dispersed, separate spaced non-solidified regions of filler within the unhardened matrix material to the surfaces. A solid mechanical bond may be provided by hardening the matrix material or by providing a separate adhesive between the surfaces. Preferably, the regions of filler form separate spaced continuous thermally and electrically conductive paths between the surfaces.
Abstract:
An article provides sealing of an electronic component connected to a mating fluid heat exchanger by providing a diaphragm with an opening shaped to fit about the heat exchanger, the opening forming a sealing lip. A clamping ring, which expands and contracts as a function of temperature is placed around the lip of the diaphragm and subject to a temperature to shrink the clamping ring against the lip and heat exchanger for sealing the diaphragm thereto. Preferably the clamping ring is a shape memory alloy metal. In addition, a compressible metal seal may be placed between the lip and the heat exchanger to increase the ability to seal.
Abstract:
A thermally and electrically conductive paste and its method of use for making a detachable and compliant thermal conductive connection between two surfaces or making an electrical connection between first and second electrical components. The paste is comprised of a liquid metal and particulate solid constituents which is non-solidifying, conformable, compliant, is removable, provides containment to impulsive loading, and is simple to apply.
Abstract:
A fluid heat exchanger for cooling an electronic component having a housing for receiving heat from the electronic component in which the housing has a fluid inlet and an outlet at opposite ends of the housing. The cross-sectional area of the housing for conveying fluid from the inlet to the outlet decreases from the inlet to the outlet thereby reducing pressure drop without sacrificing thermal performance. The cross-sectional area may be decreased by tilting a top of the housing relative to a bottom, or providing a plurality of fins separated by channels in which the cross-sectional area of the channels decreases from the inlet to the outlet.
Abstract:
A thermally conductive coiled spring laid on its side provides a compliant, high conductive, low force thermal path between a heat source and a heat sink. Each spring contact provides two parallel heat conduction paths via each coil in the spring. The spring can be canted to permit slidable contact with a surface. In one embodiment a plurality of copper springs arranged in parallel can provide a thermal path between an electronic component and a heat sink in close proximity. The springs may be permanently attached to at least one surface at the points of contact.
Abstract:
A fluid heat exchanger for mating with an electronic component is supported from a fixed support. A connection between the fixed support and the heat exchanger is initially flexible for adjusting the position of the heat exchanger to accommodate variations in the height or attitude of the electronic component for providing a good thermal interface. Thereafter, the connection changes to a rigid connection to provide good structural suppport for the heat exchanger which allows the support to withstand vibration or shock without overloading the electronic component. The flexibility of the connection may be reversible for later readjusting the position of the heat exchanger relative to the electronic component.
Abstract:
A radiation sensitive detector employed with a thermal radiation scanning system to receive images that are scanned across said detector at predetermined velocities. The detector is sensitive to these scanned images and generates minority photocarriers that drift along the length of the detector in the opposite direction as a majority carrier flow caused by an applied biasing field. The cross-section of the detector is non-uniform along its length direction so that the density and velocity of the photocarrier packets may be appropriately controlled over the length of the detector.
Abstract:
A semiconductor image sensor comprises an array of charge collection elements buried within the semiconductor for collecting charge photogenerated in response to the image. This sensor is easily configured to discern changes in an image. One or more charge transfer devices (CTD's) of an array are associated with each column of charge collection elements. For readout, the charge collected by each charge collection element is transferred to an associated storage cell of an array CTD associated with the column in which that charge collection element is disposed.For discernment of moving targets or image changes, a difference between the charge collected by a given charge collection element during a first frame and a second frame is determined. To discern a moving target, each column of charge collection elements has a first and a second array CTD associated therewith and a first image frame of charge is collected, transferred to and stored in the channels of the first array CTD's, after which a second image frame of charge is collected, transferred to and stored in the channels of the second array CTD's. The charges in the first and second array CTD's are then read out in parallel, thereby transferring the image frames in parallel. Output CTD channels positioned to accept charge from the channels of the array CTD's have special charge transfer control structures for transferring the charge from the channels of the array's first CTD's to the channel of a first output CTD and from the channels of the array's second CTD's to the channel of a second output CTD to ensure that parallel transfer of the image frames continues in the output CTD's. This parallel in the array, parallel in the output (parallel-parallel) CTD transfer architecture minimizes interframe cross-talk and maximizes resolution. Interleaved first and second array CTD's to which charge may be selectively transferred are achieved by splitting the propagation electrodes for one phase into two electrodes each in order to control charge transfer from the charge collectors to the first and second associated CTD's independently.The CTD's (array and output together) may be combined with a prior art single-frame-at-a-time imager to form a system which appears (at the external system output) to be the same as the monolithic structure.