摘要:
The a trench semiconductor device such as a power MOSFET the high electric field at the corner of the trench is diminished by increasing the thickness of the gate oxide layer at the bottom of the trench. Several processes for manufacturing such devices are described. In one group of processes a directional deposition of silicon oxide is performed after the trench has been etched, yielding a thick oxide layer at the bottom of the trench. Any oxide which deposits on the walls of the trench is removed before a thin gate oxide layer is grown on the walls. The trench is then filled with polysilicon in or more stages. In a variation of the process a small amount of photoresist is deposited on the oxide at the bottom of the trench before the walls of the trench are etched. Alternatively, polysilicon can be deposited in the trench and etched back until only a portion remains at the bottom of the trench. The polysilicon is then oxidized and the trench is refilled with polysilicon. The processes can be combined, with a directional deposition of oxide being followed by a filling and oxidation of polysilicon. A process of forming a “keyhole” shaped gate electrode includes depositing polysilicon at the bottom of the trench, oxidizing the top surface of the polysilicon, etching the oxidized polysilicon, and filling the trench with polysilicon.
摘要:
Efficient utilization of space in a laterally-conducting semiconductor device package is enhanced by creating at least one supplemental downbond pad portion of the diepad for receiving the downbond wire from the ground contact of the device. The supplemental diepad portion may occupy area at the end or side of the package formerly occupied by non-integral leads. By receiving the substrate downbond wire, the supplemental diepad portion allows a greater area of the main diepad to be occupied by a die having a larger area, thereby enhancing space efficiency of the package.
摘要:
A disc drive assembly is provided including a head disc assembly, a housing having a base and a cover cooperating with one another to form a chamber in which the head disc assembly is housed, and a damper structure in operative association with the housing for dampening noise and/or vibration emanated from the head disc assembly. The damper structure includes a viscoelastic damper layer and a continuous, polymeric constraining layer intimately contacting and encasing the viscoelastic damper layer. The constraining layer has a greater stiffness and higher modulus of dynamic shearing elasticity than the viscoelastic damper layer, and is molded from a high density filler and a moldable compound that is immiscible with the viscoelastic damper layer to provide a discrete interface between the constraining layer and the viscoelastic damper layer.
摘要:
A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
摘要:
A super-self-aligned (SSA) structure and manufacturing process uses a single photomasking layer to define critical features and dimensions of a trench-gated vertical power DMOSFET. The single critical mask determines the trench surface dimension, the silicon source-body mesa width between trenches, and the dimensions and location of the silicon mesa contact. The contact is self-aligned to the trench, eliminating the limitation imposed by contact-to-trench mask alignment in conventional trench DMOS devices needed to avoid process-induced gate-to-source shorts. Oxide step height above the silicon surface is also reduced avoiding metal step coverage problems. Poly gate bus step height is also reduced. Other features described include polysilicon diode formation, controlling the location of drain-body diode breakdown, reducing gate-to-drain overlap capacitance, and utilizing low-thermal budget processing techniques.
摘要:
A super-self-aligned (SSA) structure and manufacturing process uses a single photomasking layer to define critical features and dimensions of a trench-gated vertical power DMOSFET. The single critical mask determines the trench surface dimension, the silicon source-body mesa width between trenches, and the dimensions and location of the silicon mesa contact. The contact is self-aligned to the trench, eliminating the limitation imposed by contact-to-trench mask alignment in conventional trench DMOS devices needed to avoid process-induced gate-to-source shorts. Oxide step height above the silicon surface is also reduced avoiding metal step coverage problems. Poly gate bus step height is also reduced. Other features described include polysilicon diode formation, controlling the location of drain-body diode breakdown, reducing gate-to-drain overlap capacitance, and utilizing low-thermal budget processing techniques.