Abstract:
A structure for preventing deteriorations of a light-emitting device and retaining sufficient capacitor elements (condenser) required by each pixel is provided. A first passivation film, a second metal layer, a flattening film, a barrier film, and a third metal layer are stacked in this order over a transistor. A side face of a first opening provided with the flattening film is covered by the barrier film, a second opening is formed inside the first opening, and a third metal layer is connected to a semiconductor via the first opening and the second opening. A capacitor element that is formed of a lamination of a semiconductor of a transistor, a gate insulating film, a gate electrode, the first passivation film, and the second metal layer is provided.
Abstract:
It is an object of the present invention to provide a semiconductor display device having an interlayer insulating film which can obtain planarity of a surface while controlling film formation time, can control treatment time of heating treatment with an object of removing moisture, and can prevent moisture in the interlayer insulating film from being discharged to a film or an electrode adjacent to the interlayer insulating film. An inorganic insulating film containing nitrogen, which is less likely to transmit moisture compared with an organic resin, is formed so as to cover a TFT. Next, an organic resin film containing photosensitive acrylic resin is applied to the organic insulting film, and the organic resin film is partially exposed to light to be opened. Thereafter, an inorganic insulting film containing nitrogen, which is less likely to transmit moisture compared with an organic resin, is fanned so as to cover the opened organic resin film. Then, in the opening part of the organic resin film, a gate insulating film and the two layer inorganic insulating film containing nitrogen are opened partially by etching to expose an active layer of the TFT.
Abstract:
In the case where a material containing an alkaline-earth metal in a cathode, is used, there is a fear of the diffusion of an impurity ion (such as alkaline-earth metal ion) from the EL element to the TFT being generated and causing the variation of characteristics of the TFT. Therefore, as the insulating film provided between TFT and EL element, a film containing a material for not only blocking the diffusion of an impurity ion such as an alkaline-earth metal ion but also aggressively absorbing an impurity ion such as an alkaline-earth metal ion is used.
Abstract:
It is an object of the present invention to provide a technology for manufacturing a highly reliable display device at a low cost with high yield. In the present invention, a spacer is formed over a pixel electrode, thereby protecting the pixel electrode layer from a mask in formation of an electroluminescent layer. In addition, since a layer that includes an organic material that has water permeability is sealed in a display device with a sealing material and the sealing material and the layer that includes the organic material are not in contact, deterioration of a light-emitting element due to a contaminant such as water can be prevented. The sealing material is formed in a portion of a driver circuit region in the display device, and thus, the narrower frame margin of the display device can also be accomplished.
Abstract:
A display device includes first to fifth insulating films, first to third conductive films, semiconductor film, a planarization layer, an organic resin film, a pixel electrode, an opposing electrode and a light-emitting member. The first insulating film includes nitrogen. The second and third insulating films include oxygen. The fifth insulating film is an inorganic insulating film. The fourth insulating film, the fifth insulating film, the planarization layer and the organic resin film include first to fourth opening, respectively. An edge portion of the third opening and an edge portion of the fourth opening are rounded. Part of the third conductive film and part of the planarization layer are located in the second opening. Part of the pixel electrode and part of the organic resin film are located in the third opening. Part of the light-emitting member and part of the opposing electrode are located in the fourth opening.
Abstract:
The present invention provides a method for manufacturing a highly reliable display device at a low cost with high yield. According to the present invention, a step due to an opening in a contact is covered with an insulating layer to reduce the step, and is processed into a gentle shape. A wiring or the like is formed to be in contact with the insulating layer and thus the coverage of the wiring or the like is enhanced. In addition, deterioration of a light-emitting element due to contaminants such as water can be prevented by sealing a layer including an organic material that has water permeability in a display device with a sealing material. Since the sealing material is formed in a portion of a driver circuit region in the display device, the frame margin of the display device can be narrowed.
Abstract:
Disclosed is a display device including a seal material and a sealing material. The seal material surrounds a pixel portion and the sealing material overlaps with at least any of a driver circuit and a protective circuit. The pixel portion includes a planarization layer and an organic resin film each having an opening, an end portion of which is rounded. The pixel portion further includes a first electrode, a light-emitting member over the first electrode, and a second electrode over the light-emitting member. Part of the first electrode and part of the organic resin film are located in the opening of the planarization layer. Part of the light-emitting member and Part of the second electrode are located in the opening of the organic resin film.
Abstract:
It is an object of the present invention to provide a technology for manufacturing a highly reliable display device at a low cost with high yield. In the present invention, a spacer is formed over a pixel electrode, thereby protecting the pixel electrode layer from a mask in formation of an electroluminescent layer. In addition, since a layer that includes an organic material that has water permeability is sealed in a display device with a sealing material and the sealing material and the layer that includes the organic material are not in contact, deterioration of a light-emitting element due to a contaminant such as water can be prevented. The sealing material is formed in a portion of a driver circuit region in the display device, and thus, the narrower frame margin of the display device can also be accomplished.
Abstract:
This invention provides a semiconductor device having high operation performance and high reliability. An LDD region 707 overlapping with a gate wiring is arranged in an n-channel TFT 802 forming a driving circuit, and a TFT structure highly resistant to hot carrier injection is achieved. LDD regions 717, 718, 719 and 720 not overlapping with a gate wiring are arranged in an n-channel TFT 804 forming a pixel unit. As a result, a TFT structure having a small OFF current value is achieved. In this instance, an element belonging to the Group 15 of the Periodic Table exists in a higher concentration in the LDD region 707 than in the LDD regions 717, 718, 719 and 720.
Abstract:
In a semiconductor device, gate signal lines are spaced apart from each other above a crystalline semiconductor film. Therefore a first protective circuit is not electrically connected when contact holes are opened in an interlayer insulating film. The static electricity generated during dry etching for opening the contact holes moves from the gate signal line, damages a gate insulating film, passes the crystalline semiconductor film, and again damages the gate insulating film before it reaches the gate signal line. As the static electricity generated during the dry etching damages the first protective circuit, the energy of the static electricity is reduced until it loses the capacity of damaging a driving circuit TFT. The driving circuit TFT is thus prevented from suffering electrostatic discharge damage.